International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 18 , Issue 4 , PP: 223-237, 2022 | Cite this article as | XML | Html | PDF | Full Length Article

Interval-Valued Neutrosophic Ideals of Hilbert Algebras

Aiyared Iampan 1 * , P. Jayaraman 2 , S. D. Sudha 3 , N. Rajesh 4

  • 1 Fuzzy Algebras and Decision-Making Problems Research Unit, Department of Mathematics, School of Science, University of Phayao, Mae Ka, Mueang, Phayao 56000, Thailand - (aiyared.ia@up.ac.th)
  • 2 Department of Mathematics, Bharathiyar University, Coimbatore 641046, Tamilnadu, India - (jrmsathya@gmail.com)
  • 3 Department of Mathematics, Bharathiyar University, Coimbatore 641046, Tamilnadu, India - (sudhaa88@gmail.com)
  • 4 Department of Mathematics, Rajah Serfoji Government College, Thanjavur 613005, Tamilnadu, India - (nrajesh topology@yahoo.co.in)
  • Doi: https://doi.org/10.54216/IJNS.180420

    Received: March 19, 2022 Accepted: June 29, 2022
    Abstract

    The concept of interval-valued neutrosophic sets (IVNSs) was first introduced by Wang et al. (Wang, H.;

    Smarandache, F.; Zhang, Y. Q.; Sunderraman, R. Interval neutrosophic sets and logic: Theory and applications

    in computing. Hexis, Phoenix, Ariz, USA, 2005.). In this paper, the concept of IVNSs to ideals of Hilbert

    algebras is introduced. The homomorphic inverse image of interval-valued neutrosophic ideals (IVN ideals)

    in Hilbert algebras is also studied and some related properties are investigated.

    Keywords :

    Hilbert algebra , ideal , interval-valued neutrosophic ideal , level cut

    References

    [1] Ahmad B.; Kharal, A. On fuzzy soft sets. Adv. Fuzzy Syst. 2009, 2009, Article ID 586507, 6 pages.

    [2] Atanassov, K. T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20(1), 87–96.

    [3] Atef, M.; Ali, M. I.; Al-shami, T. Fuzzy soft covering based multi-granulation fuzzy rough sets and their

    applications. Comput. Appl. Math. 2021, 40(4), 115.

    [4] Busneag, D. A note on deductive systems of a Hilbert algebra. Kobe J. Math. 1985, 2, 29–35.

    [5] Busneag, D. Hilbert algebras of fractions and maximal Hilbert algebras of quotients. Kobe J. Math.

    1988, 5, 161–172.

    [6] Caˇgman, N.; Enginoˇglu, S.; Citak, F. Fuzzy soft set theory and its application. Iran. J. Fuzzy Syst. 2011,

    8(3), 137–147.

    [7] Chajda, I.; Halas, R. Congruences and ideals in Hilbert algebras. Kyungpook Math. J. 1999, 39(2),

    429–429.

    [8] Diego, A. Sur les alg´ebres de Hilbert. Collection de Logique Math. Ser. A (Ed. Hermann, Paris) 1966,

    21, 1–52.

    [9] Dudek, W. A. On fuzzification in Hilbert algebras. Contrib. Gen. Algebra 1999, 11, 77–83.

    [10] Dudek, W. A.; Jun, Y. B. On fuzzy ideals in Hilbert algebra. Novi Sad J. Math. 1999, 29(2), 193–207.

    [11] Garg, H.; Kumar, K. An advanced study on the similarity measures of intuitionistic fuzzy sets based

    on the set pair analysis theory and their application in decision making. Soft Comput. 2018, 22(15),

    4959–4970.

    [12] Garg, H.; Kumar, K. Distance measures for connection number sets based on set pair analysis and its

    applications to decision-making process. Appl. Intell. 2018, 48(10), 3346–3359.

    [13] Garg, H.; Singh, S. A novel triangular interval type-2 intuitionistic fuzzy set and their aggregation

    operators. Iran. J. Fuzzy Syst. 2018, 15(5), 69–93.

    [14] Iampan, A.; Jayaraman, P.; Sudha, S. D.; Rajesh, N. Interval-valued neutrosophic subalgebras of Hilbert

    algebras. (submitted).

    [15] Jun, Y. B. Deductive systems of Hilbert algebras. Math. Japon. 1996, 43, 51–54.

    [16] Jun, Y. B.; Smarandache, F.; Kim, C. S. Neutrosophic cubic sets. New Math. Nat. Comput. 2017, 13(1),

    41–54.

    [17] Smarandache, F. A unifying field in logics: Neutrosophic logic, neutrosophy, neutrosophic set, neutrosophic

    probability. American Research Press, 1999.

    [18] Smarandache, F. Neutrosophic set, a generalization of intuitionistic fuzzy sets. Int. J. Pure Appl. Math.

    2005, 24(5), 287–297.

    [19] Taboon, K.; Butsri, P.; Iampan, A. A cubic set theory approach to UP-algebras. J. Interdiscip. Math.

    2020, 23(8), 1449–1486.

    [20] Wang, H.; Smarandache, F.; Zhang, Y. Q.; Sunderraman, R. Interval neutrosophic sets and logic: Theory

    and applications in computing. Hexis, Phoenix, Ariz, USA, 2005.

    [21] Zadeh, L. A. Fuzzy sets. Inf. Control 1965, 8(3), 338–353.

    Cite This Article As :
    Iampan, Aiyared. , Jayaraman, P.. , D., S.. , Rajesh, N.. Interval-Valued Neutrosophic Ideals of Hilbert Algebras. International Journal of Neutrosophic Science, vol. , no. , 2022, pp. 223-237. DOI: https://doi.org/10.54216/IJNS.180420
    Iampan, A. Jayaraman, P. D., S. Rajesh, N. (2022). Interval-Valued Neutrosophic Ideals of Hilbert Algebras. International Journal of Neutrosophic Science, (), 223-237. DOI: https://doi.org/10.54216/IJNS.180420
    Iampan, Aiyared. Jayaraman, P.. D., S.. Rajesh, N.. Interval-Valued Neutrosophic Ideals of Hilbert Algebras. International Journal of Neutrosophic Science , no. (2022): 223-237. DOI: https://doi.org/10.54216/IJNS.180420
    Iampan, A. , Jayaraman, P. , D., S. , Rajesh, N. (2022) . Interval-Valued Neutrosophic Ideals of Hilbert Algebras. International Journal of Neutrosophic Science , () , 223-237 . DOI: https://doi.org/10.54216/IJNS.180420
    Iampan A. , Jayaraman P. , D. S. , Rajesh N. [2022]. Interval-Valued Neutrosophic Ideals of Hilbert Algebras. International Journal of Neutrosophic Science. (): 223-237. DOI: https://doi.org/10.54216/IJNS.180420
    Iampan, A. Jayaraman, P. D., S. Rajesh, N. "Interval-Valued Neutrosophic Ideals of Hilbert Algebras," International Journal of Neutrosophic Science, vol. , no. , pp. 223-237, 2022. DOI: https://doi.org/10.54216/IJNS.180420