In this paper, we propose a novel generalization for one parameter inverse Lindley distribution to fitting monotonically descending data named the T-ILD{Y} distribution class , T is one parameter inverse exponential distribution , R has an one parameter inverse Lindley distribution , and the variable Y is one parameter exponential distribution, the resulting distribution is inverse exponential- inverse Lindley- exponential (IEILDE). The theory of fuzzy sets are used by converting the distribution to fuzzy by using a fuzzy triangular distribution based on the quantile function (FIEILE), the maximum likelihood , and the maximum likelihood, and the maximum product spacing method were used estimate the parameters of the distribution. We conclude that at cutoff α=0.1, ML is better than the MPS, and at cutoff coefficients α=0.3, 0.5, 0.7, MPS was better than the ML, The higher the cutoff, the better the maximum likelihood method.
Read MoreDoi: https://doi.org/10.54216/GJMSA.0110201
Vol. 11 Issue. 2 PP. 01-14, (2024)
In this paper, we find the Wiener polynomial of multi-circles of Paraffin structural. We prove that this obtained formula is better than the formulas, which are previously presented. Also, we evaluate the coefficients for any limited power of without depending on the number of circles, and we find the Wiener index and average distance for this structural. On the other hand, we build a MATLAB program to evaluate the Wiener polynomial coefficient, Wiener index, and average distance.
Read MoreDoi: https://doi.org/10.54216/GJMSA.0110202
Vol. 11 Issue. 2 PP. 15-21, (2024)