Galoitica: Journal of Mathematical Structures and Applications

Journal DOI

https://doi.org/10.54216/GJSMA

Submit Your Paper

2834-5568ISSN (Online)

Volume 11 , Issue 2 , PP: 60-72, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

Irreversible k-Threshold Conversion Number of Strong Grids for k>3

Ali Kassem 1 * , Ramy Shaheen 2 , Suhail Mahfud 3

  • 1 Department of Mathematics, Faculty of Science, Tishreen University, Lattakia, Syria - (ali2007.kasem@gmail.com)
  • 2 Department of Mathematics, Faculty of Science, Tishreen University, Lattakia, Syria - (shaheenramy2010@hotmail.com)
  • 3 Department of Mathematics, Faculty of Science, Tishreen University, Lattakia, Syria - (mahfudsuhail@gmail.com)
  • Doi: https://doi.org/10.54216/GJMSA.0110208

    Received: December 24, 2023 Revised: April 19, 2024 Accepted: August 10, 2024
    Abstract

    An irreversible k-threshold conversion process on a graph 𝐺=(𝑉,𝐸) is a dynamic, iterative process which begins by choosing a set 𝑆0⊆𝑉. For each step 𝑑(𝑑=1,2,…,), 𝑆𝑑 is obtained from 𝑆𝑑−1 by adjoining all vertices that have at least k neighbors in 𝑆𝑑−1. We call 𝑆0 the seed set of the k-threshold conversion process and if 𝑆𝑑=𝑉(𝐺) for some 𝑑≥0, then 𝑆0 is called an irreversible k-threshold conversion set (IkCS) of 𝐺. The k-threshold conversion number of 𝐺 (denoted by (πΆπ‘˜(𝐺)) is the minimum cardinality of all the IkCSs of 𝐺. In this paper, we study Irreversible k-threshold conversion processes on strong grids π‘ƒπ‘šβŠ π‘ƒπ‘›. We determine πΆπ‘˜(𝑃3βŠ π‘ƒπ‘›) for π‘˜=5,6,7 and πΆπ‘˜(𝑃4βŠ π‘ƒπ‘›) for π‘˜=6,7. We also present upper bounds for 𝐢4(𝑃3βŠ π‘ƒπ‘›), 𝐢4(𝑃4βŠ π‘ƒπ‘›),𝐢5(𝑃3βŠ π‘ƒπ‘›), then we determine 𝐢8(π‘ƒπ‘šβŠ π‘ƒπ‘›) for arbitrary π‘š,𝑛.

    Keywords :

    Strong grid , graph conversion process , k-threshold conversion set

    References

    [1] Adams SS, Brass Z, Stokes C, Troxell DS. Irreversible k-threshold and majority conversion processes on complete multipartite graphs and graph products. Australas J Comb. 2015; 61: 156-174. Available from: https://ajc.maths.uq.edu.au/pdf/61/ajc_v61_p156.pdf.

    [2] Centeno CC, Dourado MC, Penso LD, Rautenbach D, Szwarcfiter JL. Irreversible Conversion of Graphs. Theor Comput Sci. 2011; 412: 3693-3700. DOI: https://doi.org/10.1016/j.tcs.2011.03.029.

    [3] Dreyer PA., Jr, Roberts FS. Irreversible k-threshold processes: Graph theoretical threshold models of the spread of disease and of opinion. Discret Appl Math. 2009; 157(7): 1615-1627. DOI: https://doi.org/10.1016/j.dam.2008.09.012.

    [4] Frances MD, Mynhardt CM, Wodlinger JL. Subgraph-avoiding minimum decycling sets and k-conversion sets in graphs. Australas J Comb. 2019; 74(3): 288-304. Available from: https://ajc.maths.uq.edu.au/pdf/74/ajc_v74_p288.pdf

    [5] Gagnon A, Hassler A, Huang J, Krim-Yee A, Inerney FM, Zacarias AM, Seamone B, Virgile V. A method for eternally dominating strong grids. Discret Math Theor Comput Sci 2020; 22(1): 1j+. DOI: https://doi.org/10.23638/DMTCS-22-1-8.

    [6] Klobučar A. Independent sets and independent dominating sets in the strong product of paths and cycles. Math Commun. 2005; 10(1): 23-30. Available from: https://hrcak.srce.hr/file/1331.

    [7] Kynčl J, Lidický B, Vyskočil T. Irreversible 2-conversion set in graphs of bounded degree. Discret Math Theor Comput Sci. 2017; 19(3): 81-89. DOI: https://doi.org/10.23638/DMTCS-19-3-5.

    [8] Mynhardt CM, Wodlinger JL. A Lower Bound On The k-Conversion Number Of Graphs Of Maximum Degree k + 1. Trans Combin. 2019; 9(3): 1-12. DOI: http://dx.doi.org/10.22108/toc.2019.112258.1579.

    [9] Mynhardt CM, Wodlinger JL. The k-conversion number of regular graphs, AKCE Int J Graphs Comb. 2020; 17(3): 955-965. DOI: https://doi.org/10.1016/j.akcej.2019.12.016.

    [10] Shaheen R, Mahfud S, Kassem A. Irreversible k-Threshold Conversion Number of Circulant Graphs. J Appl Math. 2022; 2022: 14. 1250951. DOI: https://doi.org/10.1155/2022/1250951.

    [11] Shaheen R, Mahfud S, Kassem A. Irreversible k-Threshold Conversion Number of Some Graphs. Arab Journal of Mathematical Sciences. 2022; Vol. ahead-of-print No. ahead-of-print. DOI: https://doi.org/10.1108/AJMS-07-2021-0150.

    [12] Shaheen R, Mahfud S, Kassem A. Irreversible k-Threshold Conversion Number of the Strong Product of Two Paths when k=2,3. Tishreen University Journal for Research and Scientific Studies, Basic Science Series. 2022; 44(3): 67-82. Available from: http://journal.tishreen.edu.sy/index.php/bassnc/article/view/13249.

    [13] Takaoka A, Ueno S. A Note on Irreversible 2-Conversion Sets in Subcubic Graphs. IEICE Trans Inf Syst. 2015; E98.D(8): 1589-91. DOI: https://doi.org/10.1587/transinf.2015EDL8021.

    Cite This Article As :
    Kassem, Ali. , Shaheen, Ramy. , Mahfud, Suhail. Irreversible k-Threshold Conversion Number of Strong Grids for k>3. Galoitica: Journal of Mathematical Structures and Applications, vol. , no. , 2024, pp. 60-72. DOI: https://doi.org/10.54216/GJMSA.0110208
    Kassem, A. Shaheen, R. Mahfud, S. (2024). Irreversible k-Threshold Conversion Number of Strong Grids for k>3. Galoitica: Journal of Mathematical Structures and Applications, (), 60-72. DOI: https://doi.org/10.54216/GJMSA.0110208
    Kassem, Ali. Shaheen, Ramy. Mahfud, Suhail. Irreversible k-Threshold Conversion Number of Strong Grids for k>3. Galoitica: Journal of Mathematical Structures and Applications , no. (2024): 60-72. DOI: https://doi.org/10.54216/GJMSA.0110208
    Kassem, A. , Shaheen, R. , Mahfud, S. (2024) . Irreversible k-Threshold Conversion Number of Strong Grids for k>3. Galoitica: Journal of Mathematical Structures and Applications , () , 60-72 . DOI: https://doi.org/10.54216/GJMSA.0110208
    Kassem A. , Shaheen R. , Mahfud S. [2024]. Irreversible k-Threshold Conversion Number of Strong Grids for k>3. Galoitica: Journal of Mathematical Structures and Applications. (): 60-72. DOI: https://doi.org/10.54216/GJMSA.0110208
    Kassem, A. Shaheen, R. Mahfud, S. "Irreversible k-Threshold Conversion Number of Strong Grids for k>3," Galoitica: Journal of Mathematical Structures and Applications, vol. , no. , pp. 60-72, 2024. DOI: https://doi.org/10.54216/GJMSA.0110208