Volume 11 , Issue 1 , PP: 35-46, 2024 | Cite this article as | XML | Html | PDF | Full Length Article
Khadija Ben Othman 1 *
Doi: https://doi.org/10.54216/GJMSA.0110104
A function f:V(G)→{0,1,2} is called a Perfect Italian dominating function (PIDF) of a graph G=(V,E) if ∑_(v∈N(u)) f(v)=2 for every vertex u∈V(G) with f(u)=0. The weight of an PIDF is w(f)=∑_(v∈V) f(v) . The minimum weight of all Perfect Italian dominating functions that can be conducted on a graph G is called the perfect Italian domination number of G and is denoted by γ_I^p (G). In this paper, we study the problem on different graph classes. We determine the perfect Italian domination numbers of the circulant graphs C_n {1,2} for n≥5 and give upper bounds for γ_I^p (C_n {1,3}) when n≥7. We also find this parameter for generalized Petersen graph P(n,2) when n≥5. We determine γ_I^p (G) of strong grids P_2⊠P_n and P_3⊠P_n for arbitrary n≥2, then we introduce an upper bound for γ_I^p (P_m⊠P_n ) when m,n≥2 are arbitraries. Finally, we determine the perfect Italian domination number of Jahangir graph J_(s,m) for arbitrary s≥2 and m≥3.
perfect Italian dominating function , perfect Italian domination number , Circulant graph , generalized Petersen graph , strong grid , Jahangir graph
[1] L. Xu, A Study of the Eigenvalues pf the Matrix of Distance Reciprocals in and the cycle , Galoitica: Journal of Mathematical Structures and Applications., 6 (2023), 08-16. https://doi.org/10.54216/GJMSA.060201.
[2] M.R. Fellows, M.N. Hoover, Perfect domination, Australas. J. Combin., 3 (1991), 141-150. https://ajc.maths.uq.edu.au/pdf/3/ajc-v3-p141.pdf.
[3] R. Balakrishnan, K. Ranganathan, A Text Book of Graph Theory, Springer, New York, 1991. https://link.springer.com/book/10.1007/978-1-4614-4529-6.
[4] M. Ozcek, The Intersections Based on Joint Observables in Fuzzy Probability, Galoitica: Journal of Mathematical Structures and Applications., 5 (2023), 17-26. https://doi.org/10.54216/GJMSA.050203.
[5] M. Chellali, T.W. Haynes, S.T. Hedetniemi, A.A. McRae, Roman {2}-domination, Discrete. Appl. Math., 204 (2016), 22-28. https://dx.doi.org/10.1016/j.dam.2015.11.013
[6] M.A. Henning, W.F. Klostermeyer, Italian domination in trees, Discrete. Appl. Math., 217 (2017), 557-564. https://dx.doi.org/10.1016/j.dam.2016.09.035
[7] J. Varghese, S. Anu, A. Lakshmanan, Italian domination and Perfect Italian domination on Sierpi ski Graphs, J. Discrete. Math. Sci. Cryptogr., 24 (2021), 1885-1894. https://doi.org/10.1080/09720529.2021.1933705
[8] H. Gao, J. Huang, Y. Yin, Y. Yang, Italian domination in generalized Petersen graphs, arXiv preprint, arXiv:2005.01318, 2020. Available from: https://arxiv.org/abs/2005.01318
[9] H. Gao, C. Xi, K. Li, Q. Zhang, Y. Yang, The Italian Domination Numbers of Generalized Petersen graphs , Mathematics., 7 (2019), 714. https://doi.org/10.3390/math7080714.
[10] J.Lauri, C. Mitillos, Perfect Italian Domination on Planar and Regular Graphs, Discrete. Appl. Math., 285 (2020), 676-687. https://doi.org/10.1016/j.dam.2020.05.024
[11] T.W. Haynes, M.A. Henning, Perfect Italian Domination in Trees, Discrete. Appl. Math., 260 (2019), 164-177. https://doi.org/10.1016/j.dam.2019.01.038
[12] S. Banerjee, M.A. Henning, D. Pradhan, Perfect Italian domination in cographs. Appl. Math. Comput., 391 (2021), 125703. https://doi.org/10.1016/j.amc.2020.125703
[13] D. Pradhan, S. Banerjee, L. Jia-Bao. Perfect Italian domination in graphs: Complexity and algorithms, Discrete. Appl. Math., 319 (2022), 271-295. https://doi.org/10.1016/j.dam.2021.08.020
[14] J. Varghese, A. Lakshmanan, Perfect Italian Domination Number of Graphs, Palest. J. Math., 12 (2023), 158-168. Available from: https://pjm.ppu.edu/paper/1259-perfect-italian-domination-number-graphs
[15] F. Romeo, Chordal circulant graphs and induced matching number. Discrete. Math., 343 (2020), 111947. https://doi.org/10.1016/j.disc.2020.111947
[16] B.J. Ebrahimi, N. Jahanbakht, E.S. Mahmoodian, Vertex domination of generalized Petersen graphs, Discrete. Math., 309 (2009), 4355-4361. https://doi.org/10.1016/j.disc.2009.01.018
[17] A. Gagnon, A. Hassler, J. Huang, A. Krim-Yee, F.M. Inerney, A.M. Zacarias, B. Seamone, V. Virgile, A method for eternally dominating strong grids, Discrete Math Theor Comput Sci., 22 (2020), 1j+. https://doi.org/10.23638/DMTCS-22-1-8
[18] M.A. Mojdeh, A.N. Ghameshlou, Domination in Jahangir Graph , Int. J. Contemp. Math. Sci., 2 (2007), 1193-1199. http://dx.doi.org/10.12988/ijcms.2007.07122