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Abstract 

A function 𝑓: 𝑉(𝐺) → {0,1,2} is called a Perfect Italian dominating function (PIDF) of a graph 𝐺 = (𝑉, 𝐸) if 

∑ 𝑓(𝑣) = 2𝑣∈𝑁(𝑢)  for every vertex 𝑢 ∈ 𝑉(𝐺) with 𝑓(𝑢) = 0. The weight of an PIDF is 𝑤(𝑓) = ∑ 𝑓(𝑣)𝑣∈𝑉 . The 

minimum weight of all Perfect Italian dominating functions that can be conducted on a graph 𝐺 is called the perfect 

Italian domination number of 𝐺 and is denoted by 𝛾𝐼
𝑝(𝐺). In this paper, we study the problem on different graph 

classes. We determine the perfect Italian domination numbers of the circulant graphs 𝐶𝑛{1,2} for 𝑛 ≥ 5 and give 

upper bounds for 𝛾𝐼
𝑝(𝐶𝑛{1,3})  when 𝑛 ≥ 7. We also find this parameter for generalized Petersen graph 𝑃(𝑛, 2) 

when 𝑛 ≥ 5. We determine 𝛾𝐼
𝑝(𝐺) of strong grids 𝑃2 ⊠ 𝑃𝑛 and 𝑃3 ⊠ 𝑃𝑛 for arbitrary 𝑛 ≥ 2, then we introduce an 

upper bound for 𝛾𝐼
𝑝(𝑃𝑚 ⊠ 𝑃𝑛) when 𝑚, 𝑛 ≥ 2 are arbitraries. Finally, we determine the perfect Italian domination 

number of Jahangir graph 𝐽𝑠,𝑚 for arbitrary 𝑠 ≥ 2 and 𝑚 ≥ 3. 

Keywords: perfect Italian dominating function; perfect Italian domination number; Circulant graph; generalized 

Petersen graph; strong grid; Jahangir graph 

1. Introduction  

Let 𝐺 = (𝑉, 𝐸) be a graph with |𝑉| = 𝑛 vertices and |𝐸| = 𝑚 edges. The open neighborhood of a vertex 𝑣 ∈ 𝑉 is 

𝑁(𝑣) = {𝑢 ∈ 𝑉: 𝑢𝑣 ∈ 𝐸} and the closed neighborhood of 𝑣 is 𝑁[𝑣] = 𝑁(𝑣) ∪ {𝑣}. The degree of a vertex 𝑣 

(denoted by deg(𝑣) ) is the number of all vertices that are adjacent to 𝑣. Therefore,  deg (𝑣) = |𝑁(𝑣)|. The distance 

𝑑(𝑢, 𝑣) between two vertices 𝑢 and 𝑣 of a finite graph is the minimum length of the paths connecting them [1]. 

Let 𝑌 ⊆ 𝑉 and let 𝐹 be a subset of 𝐸 such that 𝐹 consists of all edges of 𝐺 which have endpoints in 𝑌, then 𝐻 =
(𝑌, 𝐹) is called an induced subgraph of 𝐺 by 𝑌 and is denoted by 𝐺[𝑌]. A dominating vertex set of any graph 𝐺 =
(𝑉, 𝐸) is a subset 𝐷 ⊆ 𝑉 satisfies that each vertex 𝑣 ∈ 𝑉 − 𝐷 is adjacent to at least one vertex from 𝐷. The 

minimum cardinality of all dominating sets of a graph 𝐺 is called the domination number of 𝐺 and is denoted by 

𝛾(𝐺). A dominating set 𝐷 is a perfect dominating set if it satisfies that for every vertex 𝑣 ∈ 𝑉 − 𝐷; |𝑁(𝑣) ∩ 𝐷| =
1. The minimum cardinality of all perfect dominating sets of 𝐺 is the perfect domination number of 𝐺 (denoted 

𝛾𝑝(𝐺)). For more information on perfect domination in graphs see [2]. For any undefined term in this paper, [3] is 

recommended. 

In mathematics, it is very common to conduct functions on different mathematical structures in order to achieve a 

certain optimization, see [4], let 𝑓 be a function defined on the vertex set 𝑉 of a graph 𝐺, the weight of 𝑓 is the 

accumulated weight assigned by 𝑓 to all vertices of 𝐺, i.e., 𝑤(𝑓) = ∑ 𝑓(𝑣)𝑣∈𝑉 .  An Italian dominating function 

(IDF) of a graph 𝐺 is a function 𝑓: 𝑉(𝐺) → {0,1,2} so that for every vertex 𝑢 ∈ 𝑉, if 𝑓(𝑢) = 0 then ∑ 𝑓(𝑣)𝑣∈𝑁(𝑢) ≥

2. The Italian domination number of 𝐺, denoted by 𝛾𝐼(𝐺), is the minimum weight of all IDFs of 𝐺.  This parameter 

was first introduced by Chellali et al. [5]. The problem was studied on trees by Henning et al. [6]. Varghese et al. 

https://doi.org/10.54216/GJMSA.0110104
mailto:khagijabenothman33@gmail.com


 
 
Galoitica: Journal of Mathematical Structures and Applications (GJMSA)              Vol. 11, No. 01, PP. 35-46, 2024 

 

27 
DOI: https://doi.org/10.54216/GJMSA.0110104  

Received: October 25, 2023 Revised: February 27, 2024 Accepted: June 27, 2024 

 

[7] determined the Italian domination number of Sierpiński graphs. Gao et al. determined the Italian domination 

numbers of generalized Petersen graphs 𝑃(𝑛, 1), 𝑃(𝑛, 2) [8] and 𝑃(𝑛, 3) [9]. 

Perfect Italian domination is a variation of the Italian domination problem that was introduced by Henning et al. 

[6]. A perfect Italian dominating function (PIDF) of a graph 𝐺 is a function 𝑓: 𝑉(𝐺) → {0,1,2} that satisfies the 

following condition, for every vertex 𝑢 ∈ 𝑉, if 𝑓(𝑢) = 0 then ∑ 𝑓(𝑣)𝑣∈𝑁(𝑢) = 2. The minimum weight of all 

PIDFs that can be conducted on a graph 𝐺 is called the perfect Italian domination number of 𝐺 and is denoted 

by𝛾𝐼
𝑝(𝐺). Henning et al. [6]. found 𝛾𝐼

𝑝(𝐺) for some simple graphs such as paths and cycles. Varghese et al. [7] 

determined the perfect Italian domination number of Sierpiński graphs. Lauri et al. [10] studied the problem on 

planar, regular and split graphs. For more information on perfect Italian domination, see Haynes et al. [11], 

Banerjee et al. [12] and Pradhan et al. [13]. Varghese et al. [14] studied the relationship between the perfect Italian 

domination number of the Mycielskian of a graph and the perfect domination number of the graph. They also 

obtained the perfect Italian domination numbers of the cartesian products 𝑃2◻𝑃𝑛 and 𝐾𝑚◻𝐾𝑛 for any 

arbitrary𝑚, 𝑛 ≥ 1.     

The circulant graph 𝐶𝑛(𝑆) [15] with the connection set 𝑆 ⊆ {1,2, … , 𝑛} is a simple undirected graph which has the 

vertex set 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} where subscripts are taken modulo 𝑛. Any two vertices 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉 are adjacent if and 

only if |𝑖 − 𝑗| ∈ 𝑆. Therefore, the circulant graph 𝐶𝑛{1, 𝑟}; 2 ≤ 𝑟 ≤ ⌊
𝑛

2
⌋ is 4-regular. 

The generalized Petersen graph 𝑃(𝑛, 𝑘) with 𝑛 ≥ 1 and 1 ≤ 𝑘 ≤ ⌊
𝑛−1

2
⌋ is a 3-regular, simple and undirected graph 

with the vertex set 𝑉 = {𝑢𝑖, 𝑣𝑖 : 1 ≤ 𝑖 ≤ 𝑛} and the edge set 𝐸 = {𝑢𝑖𝑣𝑖 , 𝑢𝑖𝑢𝑖+1, 𝑣𝑖𝑣𝑖+𝑘  ∶ 1 ≤ 𝑖 ≤ 𝑛} where 

subscripts are taken modulo 𝑛. It is obvious that |𝑉(𝑃(𝑛, 𝑘))| = 2𝑛 and |𝐸(𝑃(𝑛, 𝑘))| = 3𝑛 For more information 

on the generalized Petersen graph, see [16]. 

We define the strong product of two paths 𝑃𝑚 and 𝑃𝑛 (also called a strong grid) as the graph 𝑃𝑚⊠𝑃𝑛 such that  

𝑉(𝑃𝑚⊠𝑃𝑛) = 𝑉(𝑃𝑚 × 𝑃𝑛) = {(𝑖, 𝑗): 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛} and two vertices (𝑖, 𝑖′), (𝑗, 𝑗′) are adjacent if and only 

if: 

 𝑖 is adjacent to 𝑗 and 𝑖′ = 𝑗′. 

 𝑖 = 𝑗 and 𝑖′ is adjacent to 𝑗′. 

 𝑖 is adjacent to 𝑗 and 𝑖′ is adjacent to 𝑗′. 

For more information on strong grids, see [17]. The Jahangir graph 𝐽(𝑠, 𝑚) with 𝑠, 𝑚 ≥ 2 is a simple undirected 

graph on 𝑠𝑚 + 1 vertices. It consists of a cycle 𝐶𝑠𝑚 and a central vertex 𝑣𝑠𝑚+1 that is adjacent to 𝑚 vertices of 

𝐶𝑠𝑚 which are {𝑣1+𝑖𝑠: 1 ≤ 𝑖 ≤ 𝑚 − 1}. i.e., the distance between every two consecutive vertices of degree 3 on 

𝐶𝑠𝑚 is 𝑠. We denote the set {𝑣1+𝑖𝑠: 1 ≤ 𝑖 ≤ 𝑚 − 1} by 𝑅. For more information on Jahangir graph, see [18]. 

In this paper, we determine the perfect Italian domination number of the circulant graph 𝐶𝑛{1,2} for 𝑛 ≥ 5 and 

introduce an upper bound for the perfect Italian domination number 𝐶𝑛{1,3} when 𝑛 ≥ 7. We also find this 

parameter for generalized Petersen graph 𝑃(𝑛, 2) when 𝑛 ≥ 5. We determine 𝛾𝐼
𝑝(𝑃2 ⊠ 𝑃𝑛)  and 𝛾𝐼

𝑝(𝑃3 ⊠ 𝑃𝑛) for 

arbitrary 𝑛 ≥ 2, then we introduce an upper bound for 𝛾𝐼
𝑝(𝑃𝑚 ⊠ 𝑃𝑛) when 𝑚, 𝑛 ≥ 2 are arbitraries. Finally, we 

determine the perfect Italian domination number of Jahangir graph 𝐽𝑠,𝑚 for arbitrary 𝑠 ≥ 2 and 𝑚 ≥ 3. 

Proposition 1 [6]: For any graph 𝐺 = (𝑉, 𝐸); 𝛾𝐼
𝑝(𝐺) ≥ 𝛾𝐼(𝐺).  

Proposition 2 [6]: For any path 𝑃𝑛 with 𝑛 ≥ 2; 𝛾𝐼
𝑝(𝐺) = ⌈

𝑛+1

2
⌉. 

Proposition 3 [8]: Let 𝑃(𝑛, 2) be a generalized Petersen graph with 𝑛 ≥ 5, then: 

 

𝛾𝐼(𝑃(𝑛, 2)) = {
⌈
4𝑛

5
⌉  𝑖𝑓 𝑛 ≡ 0,3,4(𝑚𝑜𝑑 5);   

⌈
4𝑛

5
⌉ + 1 𝑖𝑓 𝑛 ≡ 1,2(𝑚𝑜𝑑 5).
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Note 1: In the upcoming sections of this paper, we will use the term weight of a vertex 𝑣 to represent the assigned 

number to 𝑣 when conducting a PIDF on the studied graph. We will also use the term imperfect vertex to represent 

a vertex 𝑣 with 𝑓(𝑣) = 0 and ∑ 𝑓(𝑢)𝑢∈𝑁(𝑣) ≠ 2. 

Note 2: Let 𝑓: 𝑉(𝐺) → {0,1,2} be a PIDF on 𝐺 = (𝑉, 𝐸) and let 𝐻 = (𝑉′, 𝐸′) be a subgraph of  𝐺, the weight of 

𝐻 in relation to 𝑓 is the accumulated weight assigned by 𝑓 to all vertices of 𝐻, i.e., 𝑓(𝐻) = ∑ 𝑓(𝑣)𝑣∈𝑉′ .   

Note 3: A proper PIDF 𝑓: 𝑉(𝐺) → {0,1,2} separates 𝑉(𝐺) into three subsets {𝑉0, 𝑉1, 𝑉2} so that for any 𝑙 ∈
{0,2,1};  𝑉𝑙 = {𝑣 ∈ 𝑉; 𝑓(𝑣) = 𝑙}. 

Note 4: In all figures of this paper, we will represent a vertex 𝑣 by a white circle and the assigned number to 𝑣 

when conducting a function on the studied graph by a small number placed inside the circle. If 𝑣 is imperfect 

(𝑓(𝑣) = 0 and ∑ 𝑓(𝑢)𝑢∈𝑁(𝑣) ≠ 2) then the circle representing 𝑣 is placed inside a square. 

2. Results 

 

2.1. The perfect Italian domination number of the circulant graphs 𝑪𝐧{𝟏, 𝟐} and 𝑪𝐧{𝟏, 𝟑}. 

 

        In this sub-section we obtain 𝛾𝐼
𝑝(𝐶n{1,2}) for 𝑛 ≥ 5. We also obtain 𝛾𝐼

𝑝(𝐶n{1,3}) when 𝑛 ≡ 0(𝑚𝑜𝑑 5) then 

we present upper bounds for 𝛾𝐼
𝑝(𝐶n{1,3}) when 𝑛 ≡ 1,2,3,4(𝑚𝑜𝑑 5) and 𝑛 ≥ 7. 

 

Theorem 1. 𝐹𝑜𝑟 𝑛 ≥ 5, let 𝐶n{1,2} be a circulant graph, 

 

𝛾𝐼
𝑝(𝐶n{1,2}) = ⌈

𝑛

3
⌉. 

 

Proof: We consider the following cases for 𝑛: 

 

Case 1.  𝑛 ≡ 0(𝑚𝑜𝑑 3).  We begin by dividing 𝑉(𝐶n{1,2}) into 
𝑛

3
 blocks each of which consists of three vertices 

and we denote them as follows: 𝐵i = {𝑣3i−2, 𝑣3i−1, 𝑣3i}: 1 ≤ 𝑖 ≤
𝑛

3
. 

Let 𝑓: 𝑉(𝐺) → {0,1,2} be an arbitrary PIDF conducted on 𝐶n{1,2}. Let us prove that 𝛾𝐼
𝑝(𝐶n{1,2}) ≥

𝑛

3
 according 

to 𝑓. We assume that 𝛾𝐼
𝑝(𝐶n{1,2}) ≤

𝑛

3
− 1. This means for at least one of  𝐵x ∈ {𝐵i: 1 ≤ 𝑖 ≤

𝑛

3
} ;  𝑓(𝐵x) = 0, 

which means  𝑓(𝑣3x−2) = 𝑓(𝑣3x−1) =  𝑓(𝑣3x) = 0. We notice the following: 

 Since 𝑓(𝑣3x−2) = 𝑓(𝑣3x) = 0 then 𝑓(𝑣3x−3) + 𝑓(𝑣3x+1) = 2. Otherwise 𝑣3x−1 is imperfect and thus 

𝑓: 𝑉(𝐺) → {0,1,2} is not a PIDF which is a contradiction. 

 Since 𝑓(𝑣3x−1) = 𝑓(𝑣3x) = 0 then 𝑓(𝑣3x−4) + 𝑓(𝑣3x−3) = 2. Otherwise 𝑣3x−2 is imperfect. 

 Since 𝑓(𝑣3x−2) = 𝑓(𝑣3x−1) = 0 then 𝑓(𝑣3x+1) + 𝑓(𝑣3x+2) = 2 or else 𝑣3x is imperfect. 

We conclude that 𝑓(𝑣3x−3) + 𝑓(𝑣3x+1) +  𝑓(𝑣3x+1) + 𝑓(𝑣3x+2) = 4, which means 𝑓(𝐵x−1) + 𝑓(𝐵x+1) ≥ 4 if 

𝑓(𝐵x) = 0. We notice that there are two possible configurations of 𝑓  values on 𝐵x−1, 𝐵x, 𝐵x+1 which achieve 

𝑓(𝐵x−1) + 𝑓(𝐵x+1) = 4 when 𝑓(𝐵x) = 0. They are: 

Configuration 1:  011-000-110; 

Configuration 2:  002-000-200. 

Figure 1 shows that for each of these configurations: 

 𝑓(𝐵x−2) ≥ 1 or else 𝑣3x−6 is imperfect. 

 𝑓(𝐵x+2) ≥ 1 or else 𝑣3x+4 is imperfect.     
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Without loss of generality, we conclude that every three consecutive blocks of 𝐶n{1,2} have an accumulated weight 

larger than 2, this means  ∑ 𝑓(𝐵i)
𝑖=𝑥−2
𝑖=1 + ∑ 𝑓(𝐵i)

𝑖= 
𝑛

3
𝑖=𝑥+2

≥  
𝑛

3
− 3. Therefore, 𝛾𝐼

𝑝(𝐶n{1,2}) = ∑ 𝑓(𝐵i)
𝑖=𝑛
𝑖=1 ≥

𝑛

3
−

3 + 𝑓(𝐵x−1) + 𝑓(𝐵x) + 𝑓(𝐵x+1) which means 𝛾𝐼
𝑝(𝐶n{1,2}) ≥

𝑛

3
− 3 + 4 =

𝑛

3
+ 1 and this is a contradiction to the 

assumption that 𝛾𝐼
𝑝(𝐶n{1,2}) =

𝑛

3
− 1, therefore no subgraph of {𝐵i: 1 ≤ 𝑖 ≤

𝑛

3
} is of  accumulated weight 0  if 

𝑛 ≡ 0(𝑚𝑜𝑑 3) and we establish the lower bound: 

𝛾𝐼
𝑝(𝐶n{1,2}) ≥  

𝑛

3
 (1)  

 

To prove that 𝛾𝐼
𝑝(𝐶n{1,2}) ≤  

𝑛

3
, it is enough to conduct a PIDF of accumulated weight 

𝑛

3
 on 𝐶n{1,2}. Let 𝑓′: 𝑉 →

{0,1,2} and for 1 ≤ 𝑖 ≤ 𝑛: 

𝑓′(𝑣i) = {
1 𝑖𝑓 𝑖 ≡ 1(𝑚𝑜𝑑 3);
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.          

 . 

We notice that 𝑓′ is a PIDF on (𝐶n{1,2}) and 𝑤(𝑓′) = 0|𝑉0| + 1|𝑉1| = 0(
2𝑛

3
) + 1(

𝑛

3
) =

𝑛

3
. Which means if 𝑛 ≡

0(𝑚𝑜𝑑 3); 

𝛾𝐼
𝑝(𝐶n{1,2}) ≤  

𝑛

3
 (2)  

 

From (1) and (2) we conclude that 𝛾𝐼
𝑝(𝐶n{1,2}) =  

𝑛

3
 if 𝑛 ≡ 0(𝑚𝑜𝑑 3). 

 

Case 2. 𝑛 ≡ 1(𝑚𝑜𝑑 3).  We use the same segmentation established in Case 1 on 𝑉 − {𝑣n}, which means the ⌊
𝑛

3
⌋ =

𝑛−1

3
 blocks are defied as 𝐵i = {𝑣3i−2, 𝑣3i−1, 𝑣3i}: 1 ≤ 𝑖 ≤

𝑛−1

3
 while 𝑣n forms a mini-block (denoted 𝑀) on its own. 

Let 𝑓: 𝑉(𝐺) → {0,1,2} be an arbitrary PIDF on 𝐶n{1,2} and let us assume that 𝛾𝐼
𝑝(𝐶n{1,2}) =  

𝑛−1

3
, by following 

the same argument of Case 1 we conclude that for 2 ≤ 𝑖 ≤
𝑛−10

3
; 𝑓(𝐵i) + 𝑓(𝐵i+1) + 𝑓(𝐵i+2) ≥ 3 and 

𝑩𝒙−𝟐 

 

𝑩𝒙−𝟏 

 

𝑩𝒙 

 

𝑩𝒙+𝟏 

 

𝑩𝒙+𝟐 

 

0 Configuration 1 0 0 0 1 1 1 1 0 

𝑩𝒙−𝟐 

 

𝑩𝒙−𝟏 

 

𝑩𝒙 

 

𝑩𝒙+𝟏 

 

𝑩𝒙+𝟐 

 

0 Configuration 2 0 0 0 0 2 0 2 0 

Figure 1. The weight configurations that achieve 𝑓(𝐵x−1) + 𝑓(𝐵x+1) = 4 when 𝑓(𝐵x) = 0. 
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∑ 𝑓(𝐵i)

𝑖=
𝑛−4

3

𝑖=2

≥
𝑛 − 7

3
 

(3)  

Now we study the minimum possible weight of 𝑓(𝐵1) + 𝑓(𝐵𝑛−1

3

) + 𝑓(𝑀). It is obvious from our previous 

argument that 𝑓(𝐵1) + 𝑓(𝐵𝑛−1

3

) + 𝑓(𝑀) ≥ 2. Let us now assume that 𝑓(𝐵1) + 𝑓(𝐵𝑛−1

3

) + 𝑓(𝑀) = 2. There are 

(7
2
) = 21 different configurations to distribute two vertices of 𝑉1 on 𝐵1 ∪ 𝐵𝑛−1

3

∪ 𝑀. The following table shows 

twelve of these configurations taking into consideration that each one of the remaining nine configurations is 

symmetric to one of the first nine configurations listed in Table 1. Each double underlined zero of Table 1 

represents an imperfect vertex. 

Table 1: Different configurations to distribute two vertices of 𝑉1 on 𝐵1 ∪ 𝐵𝑛−1

3

∪ 𝑀 

 

 

 

 

 

 

 

 

We notice from Table 1 that 

configurations 8, 9, 10 are the only 

configurations that do not 

directly produce imperfect vertices 

on 𝐵𝑛−1

3

∪ 𝑀 ∪ 𝐵1. We discuss 

these three configurations as 

follows: 

 

 

 

 

 

Configuration 8: 001-0-010. 

As shown in Figure 2, when configuration 8 is applied: 

 

 𝑓(𝑣𝑛−4) = 1 or else ∑ 𝑓(𝑣) = 1𝑣∈𝑁(𝑣𝑛−2)  which means 𝑓(𝑣𝑛−5) = 0 or else  ∑ 𝑓(𝑣) = 3𝑣∈𝑁(𝑣𝑛−3) .  

 

 𝑓(𝑣4) + 𝑓(𝑣5) = 1  or else ∑ 𝑓(𝑣) = 1𝑣∈𝑁(𝑣3) , 3,4,5 if 𝑓(𝑣3) + 𝑓(𝑣4) = 0,2,3,4  respectively.  

 If 𝑓(𝑣n−6) = 1 then 𝑓(𝐵𝑛−7

3

) = 2. However, 𝑓(𝐵𝑛−10

3

) ≥ 1 or else ∑ 𝑓(𝑣) = 1𝑣∈𝑁(𝑣𝑛−7) . 

 If 𝑓(𝑣n−4) = 1, 𝑓(𝑣n−5) = 𝑓(𝑣𝑛−6) = 0 then 𝑓(𝑣n−7) = 1 or else ∑ 𝑓(𝑣) = 1𝑣∈𝑁(𝑣n−5) , the same argument 

applies to 𝑓(𝑣n−10) and the minimal pattern continues as …-001-001-001. We call this pattern: Left Pattern.  

 If 𝑓(𝑣6) = 1 then 𝑓(𝐵2) = 2. 

Configuration Number 
𝐵𝑛−1

3
∪ 𝑀 ∪ 𝐵1 

1 
000-0-011 

2 
000-0-101 

3 
000-1-001 

4 
001-0-001 

5 
010-0-001 

6 
000-0-110 

7 
000-1-010 

8 
001-0-010 

9 
000-1-100 

10 
001-0-100 

11 
010-0-010 

12 
100-0-001 
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 If 𝑓(𝑣4) = 1, 𝑓(𝑣5) = 𝑓(𝑣6) = 0 then 𝑓(𝑣7) = 1 or else ∑ 𝑓(𝑣) = 1𝑣∈𝑁(𝑣5) , the same applies to 𝑓(𝑣10) and 

the minimal pattern continues as 100-100-100-…, we call this pattern: Right Pattern 1 and it is illustrated in 

Figure 2.a. 

 If 𝑓(𝑣5) = 1, 𝑓(𝑣4) = 𝑓(𝑣6) = 0 then 𝑓(𝑣8) = 1 or else ∑ 𝑓(𝑣) = 1𝑣∈𝑁(𝑣6) , the same applies to 𝑓(𝑣11) and 

the minimal pattern continues as 010-010-010-…, we call this pattern: Right Pattern 2 and it is shown in 

Figure 2.b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to achieve minimality, 𝑓(𝑣6) = 𝑓(𝑣𝑛−6) = 0, which means we have two patterns applied to 𝑉 − {𝑣𝑖: 2 ≤

𝑖 ≤
𝑛−4

3
} at the same time (a right pattern and the one left pattern). However, in both cases a block of the left pattern 

must be adjacent to a block of a right pattern. Figure 3.a shows that if 𝐵i ∈ Right Pattern 1 and 𝐵i+1 ∈
Left Pattern then ∑ 𝑓(𝑣) = ∑ 𝑓(𝑣) = 1𝑣∈𝑁(𝑣3i+1)𝑣∈𝑁(𝑣3i) . Figure 3.b shows that if 𝐵i ∈

Right Pattern 2 and 𝐵i+1 ∈ Left Pattern then ∑ 𝑓(𝑣) = 1𝑣∈𝑁(𝑣3i) . 

  

 

 

 

 

 

 

 

 

 

 

Configuration 9: 000-1-100. 

 

Figure 4 shows that when configuration 9 is applied, 𝑓(𝑣𝑛−5) = 𝑓(𝑣𝑛−4) = 1 or else ∑ 𝑓(𝑣) < 2𝑣∈𝑁(𝑣𝑛−3) . This 

means either 𝑓(𝑣𝑛−6) = 1 which makes ∑ 𝑣𝑣∈𝑉 ≥
𝑛−10

3
+ 3 + 2  

 

𝑴 

 

𝑩𝑛−7
3

 𝑩𝑛−4
3

 

 

𝑩𝑛−1
3

 

 

𝑩𝟏 

 

𝑩𝟐 

 

1 0 0 0 0 1 0 0 1 

𝑩𝟑 

 

0 0 1 0 1 0 0 1 0 0 

𝟐. 𝒂 

𝑴 

 

𝑩𝑛−7
3

 𝑩𝑛−4
3

 

 

𝑩𝑛−1
3

 

 

𝑩𝟏 

 

𝑩𝟐 

 

1 0 0 0 0 1 0 0 1 

𝑩𝟑 

 

0 0 1 0 0 1 0 0 1 0 

𝟐. 𝒃 

Figure 2. Applying configuration 8 on 𝐵𝑛−1

3

∪ 𝑀 ∪ 𝐵1 when 𝑛 ≡ 1(𝑚𝑜𝑑 3). 

 

 

Figure 3. The pattern interactions of configuration 8. 

 

𝑩𝑖 

 

𝑩𝑖+1 

 

0 1 0 1 0 0 

𝟑. 𝒂 

𝑩𝑖 

 

𝑩𝑖+1 

 
0 0 1 1 0 0 

𝟑. 𝒃 
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and that is a contradiction, or 𝑓(𝑣𝑛−6) = 0 which means 𝑓(𝑣𝑛−8) = 𝑓(𝑣𝑛−7) = 0 or else ∑ 𝑓(𝑣) > 2𝑣∈𝑁(𝑣𝑛−6) . 

Therefore, 𝑓(𝑣𝑛−9) = 1 and thus the pattern continues as …-100-100 (Left Pattern). In a similar way, 𝑓(𝑣4) +
𝑓(𝑣5) = 1 or else ∑ 𝑓(𝑣) ≠ 2𝑣∈𝑁(𝑣3) . However, 𝑓(𝑣4) = 0 or else ∑ 𝑓(𝑣) = 3𝑣∈𝑁(𝑣2) . Therefore, 𝑓(𝑣5) = 1 and 

the pattern continues as 010-010-… (Right Pattern). As Figure 3.b shows, an imperfect vertex (𝑣3i) is obtained 

when these two patterns meet i.e., when 𝐵i ∈ Right Pattern  and 𝐵i+1 ∈ Left Pattern. 

Configuration 10: 001-0-100. 

As shown in Figure 5 when configuration 10 is applied, 𝑓(𝑣𝑛−4) = 1 otherwise, ∑ 𝑓(𝑣) ≠ 2𝑣∈𝑁(𝑣𝑛−2) . The same 

argument applies to 𝑣𝑛−4 and the left pattern continues as:   

Left Pattern: …-001-001. 

 

 

 

 

 

 

 

 

In a similar way, 𝑓(𝑣4) = 1 or else ∑ 𝑓(𝑣) ≠ 2𝑣∈𝑁(𝑣2)  and the right pattern continues as: 

Right Pattern: 100-100-… 

As shown in Figure 3.a, two imperfect vertices (𝑣3i, 𝑣3i+1) are obtained when these two patterns meet i.e., when 

𝐵i ∈ Right Pattern  and 𝐵i+1 ∈ Left Pattern. 

It is obvious that replacing the two vertices of weight 1 by one vertex of weight 2 does not change the outcome of 

any configuration. From all the above we conclude that 𝑓(𝐵1) + 𝑓(𝐵𝑛−1

3

) + 𝑓(𝑀) > 2, which means: 

𝑓(𝐵1) + 𝑓(𝐵𝑛−1
3

) + 𝑓(𝑀) ≥ 3 (4)  

From (3) and (4) we obtain the lower bound 𝛾𝐼
𝑝(𝐶n{1,2}) ≥  

𝑛−7

3
+ 3 = ⌈

𝑛

3
⌉ if 𝑛 ≡ 1(𝑚𝑜𝑑 3). 

To prove that 𝛾𝐼
𝑝(𝐶n{1,2}) ≤ ⌈

𝑛

3
⌉ we conduct a PIDF of weight ⌈

𝑛

3
⌉ on 𝐶n{1,2}. WE choose this PIDF to be 𝑓′: 𝑉 →

{0,1,2}; for 1 ≤ 𝑖 ≤ 𝑛: 𝑓′(𝑣i) = {
1 𝑖𝑓 𝑖 ≡ 1(𝑚𝑜𝑑 3);
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.          

 

𝑤(𝑓′) = 0|𝑉0| + 1|𝑉1| = 0(
2𝑛−2

3
) + 1(

𝑛+2

3
) =

𝑛+2

3
= ⌈

𝑛

3
⌉. Therefore, 𝛾𝐼

𝑝(𝐶n{1,2}) ≤ ⌈
𝑛

3
⌉. By comparing the lower 

and the upper bounds, we prove that  𝛾𝐼
𝑝(𝐶n{1,2}) = ⌈

𝑛

3
⌉ if 𝑛 ≡ 1(𝑚𝑜𝑑 3). 

𝑴 

 

𝑩𝑛−7
3

 𝑩𝑛−4
3

 

 

𝑩𝑛−1
3

 

 

𝑩𝟏 

 

𝑩𝟐 

 

0 0 0 0 1 1 1 1 0 

𝑩𝟑 

 

0 1 0 0 0 1 0 0 1 0 

Figure 4. Applying configuration 9 on 𝐵𝑛−1

3

∪ 𝑀 ∪ 𝐵1 when 𝑛 ≡ 1(𝑚𝑜𝑑 3). 

 

𝑴 

 

𝑩𝑛−7
3

 𝑩𝑛−4
3

 

 

𝑩𝑛−1
3

 

 

𝑩𝟏 

 

𝑩𝟐 

 

0 0 0 0 1 1 0 0 1 

𝑩𝟑 

 

0 0 1 0 1 0 0 1 0

1 

0 

Figure 5. Applying configuration 10 on 𝐵𝑛−1

3

∪ 𝑀 ∪ 𝐵1 when 𝑛 ≡ 1(𝑚𝑜𝑑 3). 
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Case 3. 𝑛 ≡ 2(𝑚𝑜𝑑 3).  Let 𝑓: 𝑉(𝐺) → {0,1,2} be an arbitrary PIDF on 𝐶n{1,2} and let us assume that 

𝛾𝐼
𝑝(𝐶n{1,2}) ≤  

𝑛−2

3
. We use the same segmentation of Case 1 on 𝑉 − {𝑣n−1, 𝑣n}, therefore 𝐵i =

{𝑣3i−2, 𝑣3i−1, 𝑣3i}: 1 ≤ 𝑖 ≤
𝑛−2

3
  and  for 2 ≤ 𝑖 ≤

𝑛−11

3
; 𝑓(𝐵i) + 𝑓(𝐵i+1) + 𝑓(𝐵i+2) ≥ 3 which means: 

∑ 𝑓(𝐵i)

𝑖=
𝑛−5

3

𝑖=2

≥
𝑛 − 8

3
 

(5)  

 

It is obvious that 𝑓(𝐵1) + 𝑓(𝐵𝑛−2

3

) + 𝑓(𝑀) ≥ 2.  By constructing the (8
2
) = 28 different possible configurations 

to distribute two vertices of 𝑉1 on 𝐵1 ∪ 𝐵𝑛−1

3

∪ 𝑀 which is of cardinality 8, we notice that 26 of them directly 

produce at least one imperfect vertex. We discuss the two remaining configurations: 

Configuration 001-00-100: Figure 6.a shows that: 

3. 𝑓(𝑣4) = 1 or else ∑ 𝑓(𝑣) ≠ 2𝑣∈𝑁(𝑣2) . 

4. 𝑓(𝑣𝑛−5) = 1 or else ∑ 𝑓(𝑣) ≠ 2𝑣∈𝑁(𝑣𝑛−3) . 

5. 𝑓(𝑣5) = 0 or else ∑ 𝑓(𝑣) ≠ 2𝑣∈𝑁(𝑣3) . 

6. 𝑓(𝑣𝑛−6) = 0 or else ∑ 𝑓(𝑣) ≠ 2𝑣∈𝑁(𝑣𝑛−4) . 

7. 𝑓(𝑣6) = 𝑓(𝑣𝑛−7) = 0 or else ∑ 𝑓(𝐵i)
𝑖=

𝑛−5

3
𝑖=2

≥
𝑛−5

3
 which makes 𝛾𝐼

𝑝(𝐶n{1,2}) ≥
𝑛+1

3
. 

8. 𝑓(𝑣10) = 𝑓(𝑣7) = 1 and the pattern continues as: 100-100-… (Right Pattern). 

9. 𝑓(𝑣𝑛−11) = 𝑓(𝑣𝑛−8) = 1 and the pattern continues as: …-001-001 (Left Pattern). 

Configuration 000-11-000: Figure 6.b shows that: 

10. 𝑓(𝑣4) + 𝑓(𝑣5) = 2 or else ∑ 𝑓(𝑣) ≠ 2𝑣∈𝑁(𝑣2) . 

11. 𝑓(𝑣𝑛−6) + 𝑓(𝑣𝑛−5) = 2 or else ∑ 𝑓(𝑣) ≠ 2𝑣∈𝑁(𝑣𝑛−3) . 

12. 𝑓(𝑣9) = 𝑓(𝑣𝑛−10) = 1 or else ∑ 𝑓(𝑣) ≠ 2𝑣∈𝑁(𝑣7) ; ∑ 𝑓(𝑣) ≠ 2𝑣∈𝑁(𝑣𝑛−8)  (respectively). 

13. 𝑓(𝑣8) = 𝑓(𝑣𝑛−9) = 0 or else ∑ 𝑓(𝑣) ≠ 2𝑣∈𝑁(𝑣6) ; ∑ 𝑓(𝑣) ≠ 2𝑣∈𝑁(𝑣𝑛−7)  (respectively). 

14. 𝑓(𝑣10) = 1 or else ∑ 𝑓(𝑣) ≠ 2𝑣∈𝑁(𝑣8) . Similarly, 𝑓(𝑣13) = 1 and the pattern continues as: 100-100… (Right 

Pattern). 

15. 𝑓(𝑣𝑛−11) = 1 or else ∑ 𝑓(𝑣) ≠ 2𝑣∈𝑁(𝑣9) . Similarly, 𝑓(𝑣𝑛−14) = 1 and the pattern continues as: …-001-001 

(Left Pattern). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Applying configurations 001-00-100 and 000-11-000 on 𝐵𝑛−1

3

∪ 𝑀 ∪ 𝐵1 when 

𝑛 ≡ 2(𝑚𝑜𝑑 3). 

𝑴 

 

𝑩𝑛−7
3

 

 

𝑩𝑛−4
3

 

 

𝑩𝑛−1
3

 

 

𝑩𝟏 

 

𝑩𝟐 

 

1 0 0 0 0 1 0 0 1 

𝑩𝟑 

 

0 0 1 0 0 1 0 0 1 

𝟔. 𝒂 

0 0 

𝑴 

 

𝑩𝑛−7
3

 

 

𝑩𝑛−4
3

 

 

𝑩𝑛−1
3

 

 

𝑩𝟏 

 

𝑩𝟐 

 

0 0 0 0 1 1 0 1 0 

𝑩𝟑 

 

0 0 1 0 0 1 0 0 1 

𝟔. 𝒃 

0 0 
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For both patterns and as shown in Figure 3.a, if 𝐵i ∈ Right Pattern  and 𝐵i+1 ∈ Left Pattern then 

∑ 𝑓(𝑣) = ∑ 𝑓(𝑣) = 1𝑣∈𝑁(𝑣3i+1)𝑣∈𝑁(𝑣3i) .  

It is obvious that replacing the two vertices of weight 1 by one vertex of weight 2 does not change the outcome of 

any configuration. From all the above we conclude that:  

𝑓(𝐵1) + 𝑓(𝐵𝑛−2
3

) + 𝑓(𝑀) ≥ 3 (6)  

From (5) and (6) we prove that 𝛾𝐼
𝑝(𝐶n{1,2}) ≥  

𝑛−8

3
+ 3 = ⌈

𝑛

3
⌉ when 𝑛 ≡ 2(𝑚𝑜𝑑 3). Now we conduct the function 

𝑓′: 𝑉 → {0,1}; for 1 ≤ 𝑖 ≤ 𝑛: 𝑓′(𝑣i) = {
1 𝑖𝑓 𝑖 ≡ 1(𝑚𝑜𝑑 3);
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.          

 

Since 𝑓′ is a PIDF of weight ∑ 𝑓′ (𝑣) = 𝑤(𝑓′) = 0|𝑉0| + 1|𝑉1| = 0(
2𝑛−4

3
) + 1(

𝑛+1

3
) =

𝑛+1

3
= ⌈

𝑛

3
⌉𝑣∈𝑉  on 𝐶n{1,2} 

we conclude that 𝛾𝐼
𝑝(𝐶n{1,2}) ≤ ⌈

𝑛

3
⌉ when 𝑛 ≡ 2(𝑚𝑜𝑑 3). Therefore 𝛾𝐼

𝑝(𝐶n{1,2}) = ⌈
𝑛

3
⌉ when 𝑛 ≡ 2(𝑚𝑜𝑑 3). 

From all the previous cases we obtain that for 𝑛 ≥ 5; 𝛾𝐼
𝑝(𝐶n{1,2}) = ⌈

𝑛

3
⌉.◼ 

Theorem 2. 𝐹𝑜𝑟 𝑛 ≥ 7, let 𝐶n{1,3} be a circulant graph, 

i. 𝛾𝐼
𝑝(𝐶n{1,3}) =

2𝑛

5
  𝑖𝑓 𝑛 ≡ 0(𝑚𝑜𝑑 5). 

𝑖𝑖. 𝛾𝐼
𝑝(𝐶n{1,3}) ≤ {

2 ⌊
𝑛

5
⌋ + 1  𝑖𝑓 𝑛 ≡ 1(𝑚𝑜𝑑 5);       

2 ⌊
𝑛

5
⌋ + 2  𝑖𝑓 𝑛 ≡ 2,3,4(𝑚𝑜𝑑 5).

 

Proof: We consider the following cases for 𝑛: 

Case 1. 𝑛 ≡ 0(𝑚𝑜𝑑 5). We start by dividing 𝑉(𝐶n{1,3}) into 
𝑛

5
 blocks each of which consists of five vertices and 

we denote them as 𝐵i = {𝑣5i−4, 𝑣5i−3, 𝑣5i−2, 𝑣5i−1, 𝑣5i}: 1 ≤ 𝑖 ≤
𝑛

5
. Now Let 𝑓: 𝑉(𝐺) → {0,1,2} be an arbitrary 

PIDF conducted on 𝐶n{1,3}. First, we will establish the lower bound 𝛾𝐼
𝑝(𝐶n{1,3}) ≥

2𝑛

5
 according to 𝑓. We assume 

that 𝛾𝐼
𝑝(𝐶n{1,3}) ≤

2𝑛

5
− 1. This means for at least one 𝐵x ∈ {𝐵i: 1 ≤ 𝑖 ≤

𝑛

5
} ;  𝑓(𝐵x) = 1. We discuss all the 

possible configurations that include exactly one vertex of 𝑉1 on 𝐵x: 

Configuration 00001: Figure 7.a demonstrates this configuration, we notice that: 

 𝑓(𝑣5x+1) + 𝑓(𝑣5x+2) + 𝑓(𝑣5x−5) = 3. i.e., 𝑓(𝑣5x+1) = 𝑓(𝑣5x+2) = 𝑓(𝑣5x−5) = 1. Otherwise 𝑣5x−2, 𝑣5x−1 

are imperfect. 

 𝑓(𝑣5x−6) = 1 or else 𝑣5x−3 is imperfect. 

 𝑓(𝑣5x−7) = 1 or else 𝑣5x−4 is imperfect. 

 If 𝑓(𝑣5x+3) = 𝑓(𝑣5x+4) = 𝑓(𝑣5x+5) = 0 then 𝑓(𝐵x+2) ≥ 2. Otherwise, at least one vertex of 𝑣5x+4, 𝑣5x+5 is 

imperfect.  

 𝑓(𝐵x−2) ≥ 2. Otherwise, at least one vertex of 𝑣5x−11, 𝑣5x−10, 𝑣5x−9 is imperfect.  

We conclude that 𝑓(𝐵x−2) + 𝑓(𝐵x−1) + 𝑓(𝐵x) + 𝑓(𝐵x+1) + 𝑓(𝐵x+2) ≥ 2 + 3 + 1 + 3 + 2 = 11 if 𝐵x follows 

configuration 00001.  

Configuration 00010: Figure 7.b demonstrates this configuration. We observe that: 

 𝑓(𝑣5x−6) = 2. Otherwise, 𝑣5x−3 is imperfect. 

 𝑓(𝑣5x−5) + 𝑓(𝑣5x+1) + 𝑓(𝑣5x+3) = 2. Otherwise, at least one of 𝑣5x−2,𝑣5x is imperfect. 

 𝑓(𝑣5x−7) + 𝑓(𝑣5x−5) = 1. Otherwise, 𝑣5x−4 is imperfect. 

 If 𝑓(𝑣5x−5) = 0 then 𝑓(𝑣5x−9) = 𝑓(𝑣5x−8) = 𝑓(𝑣5x−7) = 0 or else 𝑓(𝐵x−1) ≥ 4. This means 𝑓(𝑣5x−8) =
𝑓(𝑣5x−10) = 0 or else 𝑣5x−7 is imperfect. It can also be concluded that 𝑓(𝑣5x−12) = 0 or else 𝑣5x−9 is 

imperfect. This means 𝑓(𝑣5x−13) + 𝑓(𝑣5x−11) ≥ 2 or else 𝑣5x−10 is imperfect. We conclude that 𝑓(𝐵x−2) ≥
2. A similar argument can be made if 𝑓(𝑣5x−7) = 0. 
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 𝑓(𝑣5x+1) + 𝑓(𝑣5x+3) = 1 or else 𝑣5x is imperfect. Let us assume that 𝑓(𝐵x+1) = 1, then 𝑣5x+1 is imperfect 

if  𝑓(𝑣5x+1) = 0 and 𝑓(𝑣5x+3) = 1. Let us assume that 𝐵x+1 = 10000, then 𝑓(𝑣5x+6) + 𝑓(𝑣5x+7) +
𝑓(𝑣5x+8) ≥ 3 with the assigned weights 1-1-1. This means 𝑓(𝐵x+2) ≥ 3. 

We conclude that 𝑓(𝐵x−2) + 𝑓(𝐵x−1) + 𝑓(𝐵x) + 𝑓(𝐵x+1) + 𝑓(𝐵x+2) ≥ 2 + 3 + 1 + 1 + 3 + 2 = 10 if 𝐵x 

follows configuration 00010. 

Configuration 01000: is symmetric to configuration 00010. 

Configuration 10000: is symmetric to configuration 00001. 

Configuration 00100: demonstrated in Figure 7.c. We notice that: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 𝑓(𝑣5x−6) = 𝑓(𝑣5x+2) = 1. Otherwise, 𝑣5x−3, 𝑣5x−1 are imperfect (respectively).   

 𝑓(𝑣5x−7) + 𝑓(𝑣5x−5) = 2. Otherwise, 𝑣5x−4 is imperfect. 

 𝑓(𝑣5x+1) + 𝑓(𝑣5x+3) = 2. Otherwise, 𝑣5x is imperfect. 

 𝑓(𝑣5x−9) = 𝑓(𝑣5x−8) = 0. Otherwise, 𝑓(𝐵x−1) ≥ 4. This means: 𝑓(𝑣5x−11) = 0 or else 𝑣5x−8 is imperfect, 

𝑓(𝑣5x−12) + 𝑓(𝑣5x−10) = 1 or else 𝑣5x−9 is imperfect. 

       If 𝑓(𝑣5x−10) = 1 and 𝑓(𝑣5x−12) = 0 then 𝑓(𝑣5x−14) = 1 or else 𝑣5x−11 is imperfect. 

       If 𝑓(𝑣5x−10) = 0 and 𝑓(𝑣5x−12) = 1 then 𝑓(𝑣5x−14) = 1 or else 𝑣5x−11 is imperfect. 

       We conclude that 𝑓(𝐵x−2) ≥ 2 when 𝑓(𝑣5x−9) = 𝑓(𝑣5x−8) = 0. 

 𝑓(𝑣5x+4) = 𝑓(𝑣5x+5) = 0. Otherwise, 𝑓(𝐵x+1) ≥ 4. This means: 𝑓(𝑣5x+7) = 0 or else 𝑣5x+4 is imperfect,  

𝑓(𝑣5x+6) + 𝑓(𝑣5x+8) = 1 or else 𝑣5x+5 is imperfect.  

       If 𝑓(𝑣5x+6) = 1 and 𝑓(𝑣5x+8) = 0 then 𝑓(𝑣5x+10) = 1 or else 𝑣5x+7 is imperfect.  

Figure 7. All different configurations that include exactly one vertex of 𝑉1 on 𝐵x. 
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     If 𝑓(𝑣5x+6) = 0 and 𝑓(𝑣5x+8) = 0 then 𝑓(𝑣5x+10) = 1 or else 𝑣5x+7 is imperfect.   

     Therefore, 𝑓(𝐵x+2) ≥ 2 when 𝑓(𝑣5x+4) = 𝑓(𝑣5x+5) = 0.    

We conclude that 𝑓(𝐵x−2) + 𝑓(𝐵x−1) + 𝑓(𝐵x) + 𝑓(𝐵x+1) + 𝑓(𝐵x+2) ≥ 2 + 3 + 1 + 3 + 2 = 11 if 𝐵x follows 

configuration 00100. From all the above and without loss of generality, we observe that the weight of any five 

consecutive blocks is at least 10. Therefore, 𝛾𝐼
𝑝(𝐶n{1,3}) = ∑ 𝑓(𝐵i)

𝑖=
𝑛

5
𝑖=1

≥
2𝑛

5
 if 𝑛 ≡ 0(𝑚𝑜𝑑 5). Now we establish 

the lower bound by conducting a PIDF of weight 
2𝑛

5
 on 𝐶n{1,3}. Let this PIDF be  𝑓′: 𝑉 → {0,1,2}; for 1 ≤ 𝑖 ≤ 𝑛 

then 𝑓′(𝑣i) = {
1 𝑖𝑓 𝑖 ≡ 0,1(𝑚𝑜𝑑 5);
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.              

 

𝑤(𝑓′) = ∑ 𝑓′(𝑣) = 0|𝑉0| + 1|𝑉1| = 0 (
3𝑛

5
) + 1 (

2𝑛

5
) =

2𝑛

5
.

𝑣∈𝑉

 

Therefore, 𝛾𝐼
𝑝(𝐶n{1,3}) ≤

2𝑛

5
 if 𝑛 ≡ 0(𝑚𝑜𝑑 5). By comparing the lower and the upper bounds we conclude that 

𝛾𝐼
𝑝(𝐶n{1,3}) =

2𝑛

5
 if 𝑛 ≡ 0(𝑚𝑜𝑑 5). 

For the remaining cases, we also establish the upper bounds for 𝛾𝐼
𝑝(𝐶n{1,3}) by conducting a PIDF (denoted 𝑓′) 

of weight 𝛾𝐼
𝑝(𝐶n{1,3}) for each case. 

 

Case 2. 𝑛 ≡ 1(𝑚𝑜𝑑 5). The PIDF (𝑓′) is defined as: 

 𝑓′: 𝑉 → {0,1,2}; for 1 ≤ 𝑖 ≤ 𝑛 then 𝑓′(𝑣i) = {
1 𝑖𝑓 𝑖 ≡ 0,1(𝑚𝑜𝑑 5);
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.              

             

𝑤(𝑓′) = ∑ 𝑓′(𝑣) = 0|𝑉0| + 1|𝑉1| = 0 (
3(𝑛 − 1)

5
) + 1 ((

2(𝑛 − 1)

5
) + 1) = 2 ⌊

𝑛

5
⌋ + 1

𝑣∈𝑉

. 

We conclude that 𝛾𝐼
𝑝(𝐶n{1,3}) ≤ 2 ⌊

𝑛

5
⌋ + 1 if  𝑛 ≡ 1(𝑚𝑜𝑑 5). 

Case 3. 𝑛 ≡ 2(𝑚𝑜𝑑 5).  The PIDF is: 

𝑓′: 𝑉 → {0,1,2}; for 1 ≤ 𝑖 ≤ 𝑛 then 𝑓′(𝑣i) = {
1 𝑖𝑓 𝑖 ≡ 0,1(𝑚𝑜𝑑 5)  𝑜𝑟  𝑖 = 𝑛;
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                

 

𝑤(𝑓′) = 0|𝑉0| + 1|𝑉1| = 0 (
3(𝑛 − 2)

5
) + 1 ((

2(𝑛 − 2)

5
) + 2) = 2 ⌊

𝑛

5
⌋ + 2. 

This means 𝛾𝐼
𝑝(𝐶n{1,3}) ≤ 2 ⌊

𝑛

5
⌋ + 2 if  𝑛 ≡ 2(𝑚𝑜𝑑 5). 

Case 4. 𝑛 ≡ 3(𝑚𝑜𝑑 5).  We conduct the following PIDF on 𝐶n{1,3}: 

𝑓′: 𝑉 → {0,1,2}; for 1 ≤ 𝑖 ≤ 𝑛 then 𝑓′(𝑣i) = {
1 𝑖𝑓 𝑖 ≡ 0,1(𝑚𝑜𝑑 5)  𝑜𝑟  𝑖 = 𝑛;
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                

 

𝑤(𝑓′) = 0|𝑉0| + 1|𝑉1| = 0 (
3(𝑛 − 3)

5
) + 1 ((

2(𝑛 − 3)

5
) + 2) = 2 ⌊

𝑛

5
⌋ + 2. 

Therefore 𝛾𝐼
𝑝(𝐶n{1,3}) ≤ 2 ⌊

𝑛

5
⌋ + 2 if  𝑛 ≡ 3(𝑚𝑜𝑑 5). 

Case 5. 𝑛 ≡ 4(𝑚𝑜𝑑 5).  Let the PIDF be: 

𝑓′: 𝑉 → {0,1,2}; for 1 ≤ 𝑖 ≤ 𝑛 then 𝑓′(𝑣i) = {
1 𝑖𝑓 𝑖 ≡ 0,1(𝑚𝑜𝑑 5)  𝑜𝑟  𝑖 = 𝑛;
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                

 

𝑤(𝑓′) = 0|𝑉0| + 1|𝑉1| = 0 (
3(𝑛 − 4)

5
) + 1 ((

2(𝑛 − 4)

5
) + 2) = 2 ⌊

𝑛

5
⌋ + 2. 
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This means 𝛾𝐼
𝑝(𝐶n{1,3}) ≤ 2 ⌊

𝑛

5
⌋ + 2 if  𝑛 ≡ 4(𝑚𝑜𝑑 5). 

From all five cases we conclude the requested.◼ 

2.2. The perfect Italian domination number of generalized Petersen graph 𝑷(𝒏, 𝟐). 

In this section, we determine 𝛾𝐼
𝑝(𝑃(𝑛, 2)) for 𝑛 ≥ 5. 

Theorem 3. For 𝑛 ≥ 7, let 𝑃(𝑛, 2) be a generalized Petersen graph, 

𝛾𝐼
𝑝(𝑃(𝑛, 2) ) = {

⌈
4𝑛

5
⌉  𝑖𝑓 𝑛 ≡ 0,3,4(𝑚𝑜𝑑 5);   

⌈
4𝑛

5
⌉ + 1 𝑖𝑓 𝑛 ≡ 1,2(𝑚𝑜𝑑 5).

 

 

Proof: As an immediate consequence of Proposition 1 and Proposition 3, we obtain the lower bound: 

𝛾𝐼
𝑝(𝑃(𝑛, 2) ) ≥ 𝛾𝐼(𝑃(𝑛, 2)) = {

⌈
4𝑛

5
⌉  𝑖𝑓 𝑛 ≡ 0,3,4(𝑚𝑜𝑑 5);   

⌈
4𝑛

5
⌉ + 1 𝑖𝑓 𝑛 ≡ 1,2(𝑚𝑜𝑑 5).

 

 

Now we establish the upper bound 𝛾𝐼
𝑝(𝑃(𝑛, 2) ) ≤ 𝛾𝐼(𝑃(𝑛, 2)) by conducting a PIDF of weight 𝛾𝐼(𝑃(𝑛, 2)) on 

𝑃(𝑛, 2). 

Case 1. 𝑛 ≡ 0(𝑚𝑜𝑑 5).  Let 𝑓′: 𝑉 → {0,1,2}; for 1 ≤ 𝑖 ≤ 𝑛: 

𝑓′(𝑢𝑖) = {
0 𝑖𝑓 𝑖 ≡ 1,3,4(𝑚𝑜𝑑 5);

1 𝑖𝑓 𝑖 ≡ 0,2(𝑚𝑜𝑑 5).   
 

𝑓′(𝑣𝑖) = {
0 𝑖𝑓 𝑖 ≡ 0,1,2(𝑚𝑜𝑑 5);

1 𝑖𝑓 𝑖 ≡ 3,4(𝑚𝑜𝑑 5).    
 

We notice that 𝑓′ is a PIDF of weight: 

𝑤(𝑓′) = 0|𝑉0| + 1|𝑉1| = 0 (
3𝑛

5
+

3𝑛

5
) + 1 (

2𝑛

5
+

2𝑛

5
) =

4𝑛

5
= ⌈

4𝑛

5
⌉. 

This means 𝛾𝐼
𝑝(𝑃(𝑛, 2) ) ≤ ⌈

4𝑛

5
⌉ if 𝑛 ≡ 0(𝑚𝑜𝑑 5). 

 

Case 2. 𝑛 ≡ 1(𝑚𝑜𝑑 5).  We choose 𝑓′: 𝑉 → {0,1,2}; for 1 ≤ 𝑖 ≤ 𝑛: 

 

𝑓′(𝑢𝑖) = {
0 𝑖𝑓 𝑖 ≡ 1,3,4(𝑚𝑜𝑑 5) 𝑎𝑛𝑑 𝑖 ≠ 𝑛;

1 𝑖𝑓 𝑖 ≡ 0,2(𝑚𝑜𝑑 5) 𝑜𝑟 𝑖 = 𝑛.       
 

 

       𝑓′(𝑣𝑖) = {
0 𝑖𝑓 𝑖 ≡ 0,1,2(𝑚𝑜𝑑 5)𝑎𝑛𝑑 𝑖 ≠ 𝑛 − 1;

1 𝑖𝑓 𝑖 ≡ 3,4(𝑚𝑜𝑑 5) 𝑜𝑟 𝑖 = 𝑛 − 1.      
 

𝑓′ is a PIDF of weight: 

𝑤(𝑓′) = 0|𝑉0| + 1|𝑉1| 
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             = 0 (
3(𝑛−6)

5
+

3(𝑛−6)

5
+ 6) + 1 (

2(𝑛−6)

5
+

2(𝑛−6)

5
+ 6)  =

4𝑛+6

5
= ⌈

4𝑛

5
⌉ + 1.    

Therefore, 𝛾𝐼
𝑝(𝑃(𝑛, 2) ) ≤ ⌈

4𝑛

5
⌉ + 1 if 𝑛 ≡ 1(𝑚𝑜𝑑 5). 

Case 3. 𝑛 ≡ 2(𝑚𝑜𝑑 5).  The chosen PIDF is 𝑓′: 𝑉 → {0,1,2}; for 1 ≤ 𝑖 ≤ 𝑛: 

𝑓′(𝑢𝑖) = {
0 𝑖𝑓 𝑖 ≡ 1,3,4(𝑚𝑜𝑑 5) 𝑎𝑛𝑑 𝑖 ≠ 𝑛 − 1;

1 𝑖𝑓 𝑖 ≡ 0,2(𝑚𝑜𝑑 5) 𝑜𝑟 𝑖 = 𝑛 − 1.       
 

                                                  𝑓′(𝑣𝑖) = {
0 𝑖𝑓 𝑖 ≡ 0,1,2(𝑚𝑜𝑑 5)𝑎𝑛𝑑 𝑖 ≠ 𝑛 − 2;

1 𝑖𝑓 𝑖 ≡ 3,4(𝑚𝑜𝑑 5) 𝑜𝑟 𝑖 = 𝑛 − 2.      
  

𝑤(𝑓′) = 0|𝑉0| + 1|𝑉1| 

             = 0 (
3(𝑛−7)

5
+

3(𝑛−7)

5
+ 7) + 1 (

2(𝑛−7)

5
+

2(𝑛−7)

5
+ 7)  =

4𝑛+7

5
= ⌈

4𝑛

5
⌉ + 1.    

This means 𝛾𝐼
𝑝(𝑃(𝑛, 2) ) ≤ ⌈

4𝑛

5
⌉ + 1 if 𝑛 ≡ 2(𝑚𝑜𝑑 5). 

Case 4. 𝑛 ≡ 3(𝑚𝑜𝑑 5).  The PIDF is 𝑓′: 𝑉 → {0,1,2}; for 1 ≤ 𝑖 ≤ 𝑛 − 3: 

𝑓′(𝑢𝑖) = {
0 𝑖𝑓 𝑖 ≡ 1,3,4(𝑚𝑜𝑑 5);    

1 𝑖𝑓 𝑖 ≡ 0,2(𝑚𝑜𝑑 5) .       
 

 

                                                              𝑓′(𝑣𝑖) = {
0 𝑖𝑓 𝑖 ≡ 0,1,2(𝑚𝑜𝑑 5);  

1 𝑖𝑓 𝑖 ≡ 3,4(𝑚𝑜𝑑 5).      
  

𝑓′(𝑢𝑛−2) = 𝑓′(𝑢𝑛−1) = 𝑓′(𝑣𝑛) = 0; 

𝑓′(𝑢𝑛) = 𝑓′(𝑢𝑛−2) = 𝑓′(𝑢𝑛−1) = 0; 

 

𝑤(𝑓′) = 0|𝑉0| + 1|𝑉1| 

             = 0 (
3(𝑛−3)

5
+

3(𝑛−3)

5
+ 3) + 1 (

2(𝑛−3)

5
+

2(𝑛−3)

5
+ 3)  =

4𝑛+3

5
= ⌈

4𝑛

5
⌉.    

Therefore, 𝛾𝐼
𝑝(𝑃(𝑛, 2) ) ≤ ⌈

4𝑛

5
⌉ if 𝑛 ≡ 3(𝑚𝑜𝑑 5). 

Case 5. 𝑛 ≡ 4(𝑚𝑜𝑑 5).  The PIDF is 𝑓′: 𝑉 → {0,1,2}; for 1 ≤ 𝑖 ≤ 𝑛 − 4: 

𝑓′(𝑢𝑖) = {
0 𝑖𝑓 𝑖 ≡ 1,3,4(𝑚𝑜𝑑 5);    

1 𝑖𝑓 𝑖 ≡ 0,2(𝑚𝑜𝑑 5) .       
 

                                                              𝑓′(𝑣𝑖) = {
0 𝑖𝑓 𝑖 ≡ 0,1,2(𝑚𝑜𝑑 5);  

1 𝑖𝑓 𝑖 ≡ 3,4(𝑚𝑜𝑑 5).      
  

𝑓′(𝑢𝑛−2) = 𝑓′(𝑢𝑛−1) = 𝑓′(𝑣𝑛−3) = 𝑓′(𝑣𝑛) = 0; 

𝑓′(𝑢𝑛−3) = 𝑓′(𝑢𝑛) = 𝑓′(𝑣𝑛−2) = 𝑓′(𝑣𝑛−1) = 1; 

𝑤(𝑓′) = 0|𝑉0| + 1|𝑉1| 

             = 0 (
3(𝑛−4)

5
+

3(𝑛−4)

5
+ 4) + 1 (

2(𝑛−4)

5
+

2(𝑛−4)

5
+ 4)  =

4𝑛+4

5
= ⌈

4𝑛

5
⌉.    

Which means 𝛾𝐼
𝑝(𝑃(𝑛, 2) ) ≤ ⌈

4𝑛

5
⌉ if 𝑛 ≡ 4(𝑚𝑜𝑑 5). 
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From all the previous cases we establish the lower bound  𝛾𝐼
𝑝(𝑃(𝑛, 2) ) ≤ 𝛾𝐼(𝑃(𝑛, 2)) and by comparing the upper 

and lower bounds we conclude that for 𝑛 ≥ 7: 

𝛾𝐼
𝑝(𝑃(𝑛, 2) ) = 𝛾𝐼(𝑃(𝑛, 2)) = {

⌈
4𝑛

5
⌉  𝑖𝑓 𝑛 ≡ 0,3,4(𝑚𝑜𝑑 5);   

⌈
4𝑛

5
⌉ + 1 𝑖𝑓 𝑛 ≡ 1,2(𝑚𝑜𝑑 5).

 ◼ 

2.3. The perfect Italian domination numbers of Strong grids 𝑷𝒎 ⊠ 𝑷𝒏. 

        In this section we determine 𝛾𝐼
𝑝(𝑃2 ⊠ 𝑃𝑛) and 𝛾𝐼

𝑝(𝑃3 ⊠ 𝑃𝑛) for arbitrary 𝑛 ≥ 2, then we introduce an upper 

bound for 𝛾𝐼
𝑝(𝑃𝑚 ⊠ 𝑃𝑛) when 𝑚, 𝑛 ≥ 2 are arbitraries. 

Note 6: We denote the rows of 𝑃𝑚 ⊠ 𝑃𝑛 by 𝑅𝑖: 1 ≤ 𝑖 ≤ 𝑚. We also denote the columns by 𝐶𝑂𝑗: 1 ≤ 𝑗 ≤ 𝑛 and we 

denote the vertex of row 𝑖 and column 𝑗 by (𝑖, 𝑗). 

Theorem 4. For 𝑛 ≥ 2, let 𝑃2 ⊠ 𝑃𝑛 be a strong grid graph; 

𝛾𝐼
𝑝(𝑃2 ⊠ 𝑃𝑛) = 2 ⌈

𝑛

3
⌉. 

Proof: We consider the following cases for 𝑛: 

Case 1. 𝑛 ≡ 0(𝑚𝑜𝑑 3). We divide 𝑃2 ⊠ 𝑃𝑛 into 
𝑛

3
 blocks each of which consists of six vertices. We denote these 

blocks by 𝐵𝑗: 1 ≤ 𝑗 ≤ 
𝑛

3
 so that:  

𝐵𝑗 = {(1,3𝑗 − 2), (1,3𝑗 − 1), (1,3𝑗), (2,3𝑗 − 2), (2,3𝑗 − 1), (2,3𝑗)} 

Let 𝑓: 𝑉 → {0,1,2} be an arbitrary PIDF conducted on 𝑃2 ⊠ 𝑃𝑛. For any 𝐵𝑗 : 1 ≤ 𝑗 ≤ 
𝑛

3
. We notice that: 

 If 𝑓(1,3𝑗 − 1) = 0 then 𝑓(𝐵𝑗) = 2. Otherwise, (1,3𝑗 − 1) is imperfect. The same argument can be applied if 

𝑓(2,3𝑗 − 1) = 0. 

 If 𝑓(1,3𝑗 − 1) + 𝑓(2,3𝑗 − 1) ≥ 2 it is obvious that 𝑓(𝐵𝑗) ≥ 2. 

We conclude that 𝑓(𝐵𝑗) ≥ 2 for any 1 ≤ 𝑗 ≤
𝑛

3
. This means  ∑ 𝑓(𝑣)𝑣∈𝑉 = ∑ 𝑓(𝐵j)

𝑗=
𝑛

3
𝑗=1

≥ 2 (
𝑛

3
) =

2𝑛

3
. Therefore: 

𝛾𝐼
𝑝(𝑃2 ⊠ 𝑃𝑛) ≥

2𝑛

3
 (7)  

Let 𝑀1 = {(2,3𝑗 − 1): 1 ≤ 𝑗 ≤
𝑛

3
}, let 𝑓′: 𝑉 → {0,1,2} so that for 1 ≤ 𝑖 ≤ 2; 1 ≤ 𝑗 ≤ 𝑛: 

                            𝑓′((𝑖, 𝑗)) = {
2 𝑖𝑓 (𝑖, 𝑗) ∈ 𝑀1;                                  
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                       

 

We notice that 𝑓′ is a PIDF on (𝑃2 ⊠ 𝑃𝑛) and 𝑤(𝑓′) = 0|𝑉0| + 2|𝑉2| = 0 (
5𝑛

3
) + 2 (

𝑛

3
) =

2𝑛

3
. We conclude that 

𝛾𝐼
𝑝(𝑃2 ⊠ 𝑃𝑛) ≤

2𝑛

3
. Figure 8 illustrates that 𝛾𝐼

𝑝(𝑃2 ⊠ 𝑃12) ≤ 8. From (7) we obtain 𝛾𝐼
𝑝(𝑃2 ⊠ 𝑃𝑛) =

2𝑛

3
= 2 ⌈

𝑛

3
⌉ if 

𝑛 ≡ 0(𝑚𝑜𝑑 3).  
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Figure 8. 𝛾𝐼
𝑝(𝑃2 ⊠ 𝑃12) ≤ 8. 
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Case 2. 𝑛 ≡ 1(𝑚𝑜𝑑 3). We divide the graph induced by {(𝑖, 𝑗): 1 ≤ 𝑖 ≤ 2; 3 ≤ 𝑗 ≤ 𝑛 − 2} into 
𝑛−4

3
 blocks denoted 

by 𝐵𝑗 : 1 ≤ 𝑗 ≤ 
𝑛−4

3
 so that: 

𝐵𝑗 = {(1,3𝑗), (1,3𝑗 + 1), (1,3𝑗 + 2), (2,3𝑗), (2,3𝑗 + 1), (2,3𝑗 + 2)} 

The remining eight vertices of 𝑃2 ⊠ 𝑃𝑛 form the two mini-blocks: 

𝐴1 = {(1,1), (1,2), (2,1), (2,2)}; 𝐴2 = {(1, 𝑛 − 1), (1, 𝑛), (2, 𝑛 − 1), (2, 𝑛 − 1)}. Now let 𝑓: 𝑉 → {0,1,2} be an 

arbitrary PIDF conducted on 𝑃2 ⊠ 𝑃𝑛. We can directly conclude from Case 1 that ∑ 𝑓(𝐵j)
𝑗=

𝑛−4

3
𝑗=1

≥ 2 (
𝑛−4

3
), which 

means:   

𝛾𝐼
𝑝(𝑃2 ⊠ 𝑃𝑛) ≥ 2 (

𝑛 − 4

3
) + 𝑓(𝐴1) + 𝑓(𝐴2) (8)  

 We notice that: 

 If 𝑓((1,1)) = 𝑓((2,1)) = 0 then 𝑓((1,2)) + 𝑓((2,2)) = 2. Otherwise, (1,1) and (2,1) are both imperfect.  

 If 𝑓((1,1)) = 0 and 𝑓((2,1)) = 1, then 𝑓((1,2)) + 𝑓((2,2)) = 1 or else (1,1) is imperfect. The same applies 

if 𝑓((1,1)) = 1 and 𝑓((2,1)) = 0. 

 If 𝑓((1,1)) + 𝑓((2,1)) ≥ 2 then obviously 𝑓(𝐴1) ≥ 2. 

We conclude that 𝑓(𝐴1) ≥ 2 and the same argument applies to 𝐴2, i.e., 𝑓(𝐴2) ≥ 2. Therefore and from (8), we 

obtain the lower bound 𝛾𝐼
𝑝(𝑃2 ⊠ 𝑃𝑛) ≥ 2 (

𝑛−4

3
) + 2 + 2 = 2 (

𝑛+2

3
) = 2 ⌈

𝑛

3
⌉.   

Let 𝑀2 = {(2,3𝑗 + 1): 0 ≤ 𝑗 ≤
𝑛−1

3
}, we define the following PIDF 𝑓′: 𝑉 → {0,1,2} so that for 1 ≤ 𝑖 ≤ 2; 1 ≤ 𝑗 ≤

𝑛: 

                               𝑓′((𝑖, 𝑗)) = {
2 𝑖𝑓 (𝑖, 𝑗) ∈ 𝑀2;                                  
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                       

 

 

𝑤(𝑓′) = 0 (5 (
𝑛 − 4

3
) + 3 + 3) + 2 ((

𝑛 − 4

3
) + 1 + 1) = 2 (

𝑛 + 2

3
) = 2 ⌈

𝑛

3
⌉. 

Therefore, 𝛾𝐼
𝑝(𝑃2 ⊠ 𝑃𝑛) ≤ 2 ⌈

𝑛

3
⌉. Figure 9 shows that 𝛾𝐼

𝑝(𝑃2 ⊠ 𝑃10) ≤ 8. By comparing the lower and the upper 

bounds we prove that 𝛾𝐼
𝑝(𝑃2 ⊠ 𝑃𝑛) = 2 ⌈

𝑛

3
⌉ if  𝑛 ≡ 1(𝑚𝑜𝑑 3). 

 

 

 

 

 

 

Case 3. 𝑛 ≡ 2(𝑚𝑜𝑑 3). We divide the graph induced by {(𝑖, 𝑗): 1 ≤ 𝑖 ≤ 2; 1 ≤ 𝑗 ≤ 𝑛 − 2} into 
𝑛−2

3
 blocks denoted 

by 𝐵𝑗 : 1 ≤ 𝑗 ≤ 
𝑛−2

3
 so that: 

𝐵𝑗 = {(1,3𝑗 − 2), (1,3𝑗 − 1), (1,3𝑗), (2,3𝑗 − 2), (2,3𝑗 − 1), (2,3𝑗)} 

the remaining four vertices of 𝑃2 ⊠ 𝑃𝑛 form the mini-block 𝐴2 = {(1, 𝑛 − 1), (1, 𝑛), 

Figure 9.  𝛾𝐼
𝑝(𝑃2 ⊠ 𝑃10) ≤ 8. 
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(2, 𝑛 − 1), (2, 𝑛)}. From Case 1 we immediately conclude that ∑ 𝑓(𝐵j)
𝑗=

𝑛−2

3
𝑗=1

≥ 2(
𝑛−2

3
), we also found in Case 2 

that 𝑓(𝐴2) ≥ 2. Therefore 𝛾𝐼
𝑝(𝑃2 ⊠ 𝑃𝑛) ≥ 2 (

𝑛−2

3
) + 2 = 2 (

𝑛+1

3
) = 2 ⌈

𝑛

3
⌉. Let 𝑀3 = {(2, 3𝑗 − 1): 1 ≤ 𝑗 ≤

𝑛+1

3
}. 

We define the following PIDF (denoted 𝑓′) so that for 1 ≤ 𝑖 ≤ 2; 1 ≤ 𝑗 ≤ 𝑛: 

𝑓′((𝑖, 𝑗)) = {
2 𝑖𝑓 (𝑖, 𝑗) ∈ 𝑀3;                              
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                   

 

𝑤(𝑓′) = 0 (5 (
𝑛 − 2

3
) + 3) + 2 ((

𝑛 − 2

3
) + 1) = 2 (

𝑛 + 1

3
) = 2 ⌈

𝑛

3
⌉. 

This means 𝛾𝐼
𝑝(𝑃2 ⊠ 𝑃𝑛) ≤ 2 ⌈

𝑛

3
⌉ and thus 𝛾𝐼

𝑝(𝑃2 ⊠ 𝑃𝑛) = 2 ⌈
𝑛

3
⌉ if  𝑛 ≡ 2(𝑚𝑜𝑑 3). From all cases we prove the 

requested.◼ 

Theorem 5. For 𝑛 ≥ 2, let 𝑃3 ⊠ 𝑃𝑛 be a strong grid graph; 

𝛾𝐼
𝑝(𝑃3 ⊠ 𝑃𝑛) = 2 ⌈

𝑛

3
⌉ 

Proof:  

Case 𝑛 ≡ 0(𝑚𝑜𝑑 3). The blocks 𝐵𝑗 : 1 ≤ 𝑗 ≤
𝑛

3
 are defined as 𝐵𝑗 = {(1,3𝑗 − 2), 

(1,3𝑗 − 1), (1,3𝑗), (2,3𝑗 − 2), (2,3𝑗 − 1), (2,3𝑗), (3,3𝑗 − 2), (3,3𝑗 − 1), (3,3𝑗)}. For every 𝐵𝑗  we notice that: 

 If 𝑓((2,3𝑗 − 1)) = 0 then 𝑓(𝐵𝑗) = 2 or else (2,3𝑗 − 1) is imperfect. 

 If 𝑓((2,3𝑗 − 1)) = 1 and 𝑓((1,3𝑗 − 1)) = 0 then 𝑓((1,3𝑗 − 2)) + 𝑓((1,3𝑗)) + 𝑓((2,3𝑗 − 2)) +

𝑓((2,3𝑗)) = 1 or else (1,3𝑗 − 1) is imperfect. 

 If 𝑓((2,3𝑗 − 1)) = 1 and 𝑓((3,3𝑗 − 1)) = 0 then 𝑓((3,3𝑗 − 2)) + 𝑓((3,3𝑗)) + 𝑓((3,3𝑗 − 2)) +

𝑓((3,3𝑗)) = 1 or else (3,3𝑗 − 1) is imperfect. 

 If 𝑓((2,3𝑗 − 1)) = 2 then 𝑓(𝐵𝑗) ≥ 2 . 

Therefore, 𝑓(𝐵𝑗) ≥ 2 for any 1 ≤ 𝑗 ≤
𝑛

3
.  The rest of this proof is very similar to the proof of Theorem 4. We will 

only mention the main sets and functions for each case taking into consideration that the proof is exactly the same 

as Theorem 4: 

Case 𝒏 ≡ 𝟎(𝒎𝒐𝒅 𝟑): 

 𝑀1 = {(2,3𝑗 − 1): 1 ≤ 𝑗 ≤
𝑛

3
}.  

 PIDF:  𝑓′: 𝑉 → {0,1,2} so that for 1 ≤ 𝑖 ≤ 2; 1 ≤ 𝑗 ≤ 𝑛: 
 

                            𝑓′((𝑖, 𝑗)) = {
2 𝑖𝑓 (𝑖, 𝑗) ∈ 𝑀1;                                  
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                       

 

 𝑤(𝑓′) = 2 ⌈
𝑛

3
⌉. 

 𝛾𝐼
𝑝(𝑃3 ⊠ 𝑃𝑛) = 2 ⌈

𝑛

3
⌉. 

Case 𝒏 ≡ 𝟏(𝒎𝒐𝒅 𝟑): 

 For 1 ≤ 𝑗 ≤
𝑛−4

3
:  

𝐵𝑗 = {(1,3𝑗), (1,3𝑗 + 1), (1,3𝑗 + 2), (2,3𝑗), (2.3𝑗 + 1), (2,3𝑗 + 2), (3,3𝑗),  

                            (3,3𝑗 + 1), (3,3𝑗 + 2)}. 

 𝐴1 = {(1,1), (1,2), (2,1), (2,2), (3,1), (3,2)}. 

 𝐴2 = {(1, 𝑛 − 1), (1, 𝑛), (2, 𝑛 − 1), (2, 𝑛), (3, 𝑛 − 1), (3, 𝑛)}. 

 If 𝑓((2,1)) = 0 then 𝑓(𝐴1) = 2.  

             If 𝑓((2,1)) = 1 and 𝑓((1,1)) = 0 then 𝑓((1,2)) + 𝑓((2,2)) = 1. 

             If 𝑓((2,1)) = 1 and 𝑓((3,1)) = 0 then 𝑓((2,2)) + 𝑓((3,2)) = 1. 

If 𝑓((2,1)) = 2 then 𝑓(𝐴1) ≥ 2.  
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We conclude that 𝑓(𝐴1) ≥ 2 and similarly, 𝑓(𝐴2) ≥ 2. 

 𝛾𝐼
𝑝(𝑃3 ⊠ 𝑃𝑛) = ∑ 𝑓(𝐵j) + 𝑓(𝐴1) + 𝑓(𝐴2)

𝑗=
𝑛−4

3
𝑗=1

≥ 2 (
𝑛−4

3
) + 2 + 2 = 2 ⌈

𝑛

3
⌉. 

 𝑀2 = {(2,3𝑗 + 1): 0 ≤ 𝑗 ≤
𝑛−1

3
}.  

 PIDF:  𝑓′: 𝑉 → {0,1,2} so that for 1 ≤ 𝑖 ≤ 2; 1 ≤ 𝑗 ≤ 𝑛: 

                            

                                 𝑓′((𝑖, 𝑗)) = {
2 𝑖𝑓 (𝑖, 𝑗) ∈ 𝑀2;                                  
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                       

 

 𝑤(𝑓′) = 2 ⌈
𝑛

3
⌉. 

 𝛾𝐼
𝑝(𝑃3 ⊠ 𝑃𝑛) = 2 ⌈

𝑛

3
⌉. 

Case 𝒏 ≡ 𝟐(𝒎𝒐𝒅 𝟑): 

 For 1 ≤ 𝑗 ≤
𝑛−2

3
:  

𝐵𝑗 = {(1,3𝑗 − 2), (1,3𝑗 − 1), (1,3𝑗), (2,3𝑗 − 2), (2,3𝑗 − 1), (2,3𝑗), (3,3𝑗 − 2), 

                         (3,3𝑗 − 1), (3,3𝑗)}. 

 For 1 ≤ 𝑗 ≤
𝑛−2

3
;  𝑓(𝐵𝑗) ≥ 2. 

 𝐴2 = {(1, 𝑛 − 1), (1, 𝑛), (2, 𝑛 − 1), (2, 𝑛), (3, 𝑛 − 1), (3, 𝑛)}. 

 𝑓(𝐴2) ≥ 2. 

 𝛾𝐼
𝑝(𝑃3 ⊠ 𝑃𝑛) = ∑ 𝑓(𝐵j) + 𝑓(𝐴2)

𝑗=
𝑛−2

3
𝑗=1

≥ 2 (
𝑛−2

3
) + 2 = 2 ⌈

𝑛

3
⌉. 

 𝑀3 = {(2,3𝑗 − 1): 1 ≤ 𝑗 ≤
𝑛+1

3
}.  

 PIDF:  𝑓′: 𝑉 → {0,1,2} so that for 1 ≤ 𝑖 ≤ 2; 1 ≤ 𝑗 ≤ 𝑛: 

                            

                     𝑓′((𝑖, 𝑗)) = {
2 𝑖𝑓 (𝑖, 𝑗) ∈ 𝑀3;                                  
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                       

 

 𝑤(𝑓′) = 2 ⌈
𝑛

3
⌉. 

 𝛾𝐼
𝑝(𝑃3 ⊠ 𝑃𝑛) = 2 ⌈

𝑛

3
⌉. 

  From all the cases we conclude that 𝛾𝐼
𝑝(𝑃3 ⊠ 𝑃𝑛) = 2 ⌈

𝑛

3
⌉ for 𝑛 ≥ 2.◼ 

Theorem 6.  For 𝑚, 𝑛 ≥ 2, let 𝑃𝑚 ⊠ 𝑃𝑛 be a strong grid graph. We define 𝑘1 = 3 − (𝑛 𝑚𝑜𝑑 3), 𝑘2 = 3 −

(𝑚 𝑚𝑜𝑑 3), then 𝛾𝐼
𝑝(𝑃𝑚 ⊠ 𝑃𝑛) ≤

2𝑚𝑛+2𝑘1𝑚+2𝑘2𝑛+2𝑘1𝑘2

9
. 

Proof: To establish this upper bound, it is enough to conduct 𝑓′: 𝑉 → {0,1,2}, a PIDF of weight 
2𝑚𝑛+2𝑘1𝑚+2𝑘2𝑛+2𝑘1𝑘2

9
 on 𝑃𝑚 ⊠ 𝑃𝑛 for all the cases of 𝑚, 𝑛. For 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 let   𝑓′ be: 

                             𝑓′((𝑖, 𝑗)) = {
2 𝑖𝑓 (𝑖, 𝑗) ∈ 𝑀;                                    
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                       

 

Now we give 𝑀, 𝑤(𝑓′) for all cases of 𝑚, 𝑛: 

Case 1. 𝑚, 𝑛 ≡ 0(𝑚𝑜𝑑 3). 

𝑀 = {(3𝑖 − 1,3𝑗 − 1): 1 ≤ 𝑖 ≤
𝑚

3
; 1 ≤ 𝑗 ≤

𝑛

3
},   𝑤(𝑓′) =

2𝑚𝑛

9
. 

Case 2. 𝑚 ≡ 1(𝑚𝑜𝑑 3) and 𝑛 ≡ 0(𝑚𝑜𝑑 3). 

𝑀 = {(3𝑖 + 1,3𝑗 − 1): 0 ≤ 𝑖 ≤
𝑚−1

3
; 1 ≤ 𝑗 ≤

𝑛

3
},   𝑤(𝑓′) =

2𝑚𝑛+4𝑛

9
. 

Case 3. 𝑚 ≡ 2(𝑚𝑜𝑑 3) and 𝑛 ≡ 0(𝑚𝑜𝑑 3). 

𝑀 = {(3𝑖 − 1,3𝑗 − 1): 1 ≤ 𝑖 ≤
𝑚+1

3
; 1 ≤ 𝑗 ≤

𝑛

3
},   𝑤(𝑓′) =

2𝑚𝑛+2𝑛

9
. 

Case 4. 𝑚 ≡ 0(𝑚𝑜𝑑 3) and 𝑛 ≡ 1(𝑚𝑜𝑑 3). 

𝑀 = {(3𝑖 − 1,3𝑗 + 1): 1 ≤ 𝑖 ≤
𝑚

3
; 0 ≤ 𝑗 ≤

𝑛−1

3
},   𝑤(𝑓′) =

2𝑚𝑛+4𝑚

9
. 
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Case 5. 𝑚, 𝑛 ≡ 1(𝑚𝑜𝑑 3). 

𝑀 = {(3𝑖 + 1,3𝑗 + 1): 0 ≤ 𝑖 ≤
𝑚−1

3
; 0 ≤ 𝑗 ≤

𝑛−1

3
},   𝑤(𝑓′) =

2𝑚𝑛+4𝑚+4𝑛+8

9
. 

Case 6. 𝑚 ≡ 2(𝑚𝑜𝑑 3) and 𝑛 ≡ 1(𝑚𝑜𝑑 3). 

𝑀 = {(3𝑖 − 1,3𝑗 + 1): 1 ≤ 𝑖 ≤
𝑚+1

3
; 0 ≤ 𝑗 ≤

𝑛−1

3
},   𝑤(𝑓′) =

2𝑚𝑛+4𝑚+2𝑛+4

9
. 

Case 7. 𝑚 ≡ 0(𝑚𝑜𝑑 3) and 𝑛 ≡ 2(𝑚𝑜𝑑 3). 

𝑀 = {(3𝑖, 3𝑗 − 1): 1 ≤ 𝑖 ≤
𝑚

3
; 1 ≤ 𝑗 ≤

𝑛+1

3
},   𝑤(𝑓′) =

2𝑚𝑛+2𝑚

9
. 

Case 8. 𝑚 ≡ 1(𝑚𝑜𝑑 3) and 𝑛 ≡ 2(𝑚𝑜𝑑 3). 

𝑀 = {(3𝑖 + 1,3𝑗 + 1): 0 ≤ 𝑖 ≤
𝑚−1

3
; 1 ≤ 𝑗 ≤

𝑛+1

3
},   𝑤(𝑓′) =

2𝑚𝑛+2𝑚+4𝑛+4

9
. 

Case 9. 𝑚, 𝑛 ≡ 2(𝑚𝑜𝑑 3). 

𝑀 = {(3𝑖 − 1,3𝑗 − 1): 1 ≤ 𝑖 ≤
𝑚+1

3
; 1 ≤ 𝑗 ≤

𝑛+1

3
},   𝑤(𝑓′) =

2𝑚𝑛+2𝑚+2𝑛+2

9
. 

From all these cases we conclude that 𝛾𝐼
𝑝(𝑃𝑚 ⊠ 𝑃𝑛) ≤

2𝑚𝑛+2𝑘1𝑚+2𝑘2𝑛+2𝑘1𝑘2

9
 for 𝑚, 𝑛 ≥ 2 and with 𝑘1 = 3 −

(𝑛 𝑚𝑜𝑑 3), 𝑘2 = 3 − (𝑚 𝑚𝑜𝑑 3).◼ 

2.4. The perfect Italian domination number of Jahangir graph 𝑱𝒔,𝒎. 

        In this section, we determine the perfect Italian domination number of Jahangir graph 𝐽𝑠,𝑚 for any 𝑠 ≥
2 and 𝑚 ≥ 3. 

Theorem 7.  For 𝑠 ≥ 2 and 𝑚 ≥ 3, let 𝐽𝑠,𝑚 be Jahangir graph: 

𝛾𝐼
𝑝

( 𝐽𝑠,𝑚) = {

𝑚𝑠

2
+ 1  𝑖𝑓 𝑠 𝑖𝑠 𝑒𝑣𝑒𝑛;          

𝑚(𝑠 − 1)

2
+ 1  𝑖𝑓 𝑠 𝑖𝑠 𝑜𝑑𝑑.

 

Proof: 

We implied earlier that the set of 3-degree vertices of 𝐶𝑠𝑚 i.e., {𝑣1+𝑖𝑠: 1 ≤ 𝑖 ≤ 𝑚 − 1} is denoted by 𝑅. We notice 

that the vertices of 𝑅 divide  𝐽𝑠,𝑚 into 𝑚 subgraphs (each of which consists of 𝑠 + 2 vertices). For 1 ≤ 𝑖 ≤ 𝑚 − 1 

we denote these subgraphs by: 

𝑂𝐴𝑖 = {𝑣1+(𝑖−1)𝑠, 𝑣2+(𝑖−1)𝑠, … , 𝑣𝑖𝑠 , 𝑣1+𝑖𝑠 , 𝑣𝑠𝑚+1} 

taking into consideration that 𝑂𝐴𝑚 = {𝑣1+(𝑚−1)𝑠, 𝑣2+(𝑚−1)𝑠, … , 𝑣𝑠𝑚 , 𝑣1, 𝑣𝑠𝑚+1}. Figure 10 illustrates 

𝑂𝐴1, 𝑂𝐴2, 𝑂𝐴3 on 𝐽4,3. 
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Figure 10. 𝑂𝐴1, 𝑂𝐴2, 𝑂𝐴3 on 𝐽4,3.  
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We also notice that the vertices of 𝑅 divide 𝐶𝑠𝑚 into 𝑚 paths of length 𝑠 − 1. We denote them by 𝑃𝑠−1
(𝑖)

: 1 ≤ 𝑖 ≤ 𝑚 

where 𝑃𝑠−1
(𝑘)

= {𝑣2+(𝑘−1)𝑠, … , 𝑣𝑘𝑠}. We consider the following cases for 𝑠: 

Case 1. 𝑠 𝑖𝑠 𝑒𝑣𝑒𝑛. Let us discuss the perfect Italian domination of two consecutive subgraphs 𝑂𝐴𝑖 , 𝑂𝐴𝑖+1. Let 

𝑓: 𝑉 → {0,1,2} be an arbitrary PIDF conducted on 𝐽𝑠,𝑚, we notice the following observations: 

: 

 If 𝑓(𝑣2+(𝑖−1)𝑠) =  𝑓(𝑣4+(𝑖−1)𝑠) = ⋯ = 𝑓(𝑣𝑖𝑠−2) = 𝑓(𝑣𝑖𝑠) = 0 and 𝑓(𝑣3+(𝑖−1)𝑠) =  𝑓(𝑣5+(𝑖−1)𝑠) = ⋯ =

𝑓(𝑣𝑖𝑠−3) = 𝑓(𝑣𝑖𝑠−1) = 1  then by Proposition 2; 𝑓(𝑃𝑠−3
(𝑖)

) = ⌈
𝑠−2

2
⌉ =

𝑠

2
− 1. However, this means 

𝑓(𝑣1+(𝑖−1)𝑠) = 𝑓(𝑣1+𝑖𝑠) = 1 or else 𝑣2+(𝑖−1)𝑠, 𝑣𝑖𝑠 is imperfect (respectively). The same argument applies to 

𝑃𝑠−1
(𝑖+1)

. We will call this configuration 1. 

 If 𝑓(𝑣2+(𝑖−1)𝑠) =  𝑓(𝑣4+(𝑖−1)𝑠) = ⋯ = 𝑓(𝑣𝑖𝑠−2) = 𝑓(𝑣𝑖𝑠) = 0 and 𝑓(𝑣3+(𝑖−1)𝑠) =  𝑓(𝑣5+(𝑖−1)𝑠) = ⋯ =

𝑓(𝑣𝑖𝑠−3) = 𝑓(𝑣𝑖𝑠−1) = 1  then by Proposition 2; 𝑓(𝑃𝑠−1
(𝑖)

) = ⌈
𝑠

2
⌉ =

𝑠

2
.  Therefore 𝑓(𝑣1+(𝑖−1)𝑠) + 𝑓(𝑣1+𝑖𝑠) ≥ 0. 

The same argument applies to 𝑃𝑠−1
(𝑖+1)

. We will call this configuration 2. 

 If configuration 1 is applied, 𝑓(𝑣𝑠𝑚+1) ≥ 1 or else 𝑓(𝑣𝑠𝑚+1) = 0 and   ∑ 𝑓(𝑢)𝑢∈𝑁(𝑣𝑠𝑚+1) > 2 which is a 

contradiction. 

 If configuration 2 is applied and 𝑓(𝑣1+(𝑖−1)𝑠) + 𝑓(𝑣1+𝑖𝑠) < 2 then at least one of them is of weight zero which 

means 𝑓(𝑣𝑠𝑚+1) = 0, therefore two vertices of 𝑅 must be of collective weight two and the rest must be of 

collective weight zero. 

It is obvious that using vertices of weight two does not change these observations, without loss of generality, we 

conclude that: 

If configuration 1 is applied on the entire graph, then the corresponding PIDF is: 

𝑓′(𝑣𝑖) = {
1 𝑖𝑓 𝑖 = 2𝑘 + 1 𝑤ℎ𝑒𝑛 0 ≤ 𝑘 ≤

𝑠𝑚

2
;       

0 𝑖𝑓 𝑖 = 2𝑘 𝑤ℎ𝑒𝑛 1 ≤ 𝑘 ≤
𝑠𝑚

2
.                

 

which is of weight 𝑤(𝑓′) = 0 (
𝑠𝑚

2
) + 1 (

𝑠𝑚

2
+ 1) =

𝑠𝑚

2
+ 1. Therefore, 𝛾𝐼

𝑝
(𝐽𝑠,𝑚) ≤

𝑠𝑚

2
+ 1. 

If configuration 2 is applied on the entire graph, then the corresponding PIDF is: 

𝑓′′(𝑣𝑖) = {
0 𝑖𝑓 𝑖 = 2𝑘 + 1 𝑤ℎ𝑒𝑛 1 ≤ 𝑘 ≤

𝑠𝑚

2
 𝑎𝑛𝑑 𝑖 ≠ 1 + 𝑠 ;          

1 𝑖𝑓 𝑖 = 2𝑘 𝑤ℎ𝑒𝑛 1 ≤ 𝑘 ≤
𝑠𝑚

2
 𝑜𝑟 𝑖 ∈ {1,1 + 𝑠}.                

 

which is of weight 𝑤(𝑓′′) = 0 (
𝑠𝑚

2
− 1) + 1 (

𝑠𝑚

2
+ 2) =

𝑠𝑚

2
+ 2 and 𝛾𝐼

𝑝
(𝐽𝑠,𝑚) ≤

𝑠𝑚

2
+ 2. We notice that 

configuration 1 is more optimal, thus 𝛾𝐼
𝑝

(𝐽𝑠,𝑚) =
𝑠𝑚

2
+ 1 if 𝑠 ≥ 2, 𝑚 ≥ 3 and 𝑠 is even. 

Case 2. 𝑠 is odd. Let 𝑓: 𝑉 → {0,1,2} be an arbitrary PIDF conducted on 𝐽𝑠,𝑚. It is obvious that if 𝑓(𝑣𝑠𝑚+1) = 0, 

then the 𝑓(𝑅) = 2. This means at least 𝑚 − 2 vertices of 𝑅 are of weight zero. When studying 𝑓 on a subgraph 

𝑂𝐴𝑖we notice the following: 

If 𝑓(𝑣2+(𝑖−1)𝑠) =  𝑓(𝑣4+(𝑖−1)𝑠) = ⋯ = 𝑓(𝑣𝑖𝑠−3) = 𝑓(𝑣𝑖𝑠−1) = 0 and 𝑓(𝑣3+(𝑖−1)𝑠) =  𝑓(𝑣5+(𝑖−1)𝑠) = ⋯ =

𝑓(𝑣𝑖𝑠−2) = 𝑓(𝑣𝑖𝑠) = 1  then by Proposition 2; 𝑓(𝑃𝑠−1
(𝑖)

) ≤ ⌈
𝑠

2
⌉ =

𝑠

2
. However, this means 𝑓(𝑣1+(𝑖−1)𝑠) = 1 or else 

𝑣2+(𝑖−1)𝑠 is imperfect. In a similar way, if 𝑓(𝑣2+(𝑖−1)𝑠) =  𝑓(𝑣4+(𝑖−1)𝑠) = ⋯ = 𝑓(𝑣𝑖𝑠−3) = 𝑓(𝑣𝑖𝑠−1) = 1 and 

𝑓(𝑣3+(𝑖−1)𝑠) =  𝑓(𝑣5+(𝑖−1)𝑠) = ⋯ = 𝑓(𝑣𝑖𝑠−2) = 𝑓(𝑣𝑖𝑠) = 0 then 𝑓(𝑣1+𝑖𝑠) = 1 or else 𝑣𝑖𝑠 is imperfect. We 

conclude that, for 1 ≤ 𝑖 ≤ 𝑚 in order to assign the vertices of 𝑃𝑠−1
(𝑖)

 the minimal weighted possible assignment 

which is 010101..01, then: 

  All vertices of 𝑅 must be of weight 1. Otherwise, if an arbitrary vertex 𝑣1+𝑖𝑠 ∈ 𝑅 is of weight zero, then either 

𝑣𝑖𝑠 , 𝑣𝑖𝑠+2 is of weight zero and adjacent to two vertices of a collective weight (one), which is a contradiction. 

 If 𝑓(𝑣𝑠𝑚+1) = 0 then 𝑣𝑠𝑚+1 is imperfect because ∑ 𝑓(𝑢)𝑢∈𝑁(𝑣𝑠𝑚+1) = 𝑚. 
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We conclude that 𝛾𝐼
𝑝

(𝐽𝑠,𝑚) = 𝑚𝑓(𝑃𝑠−1
(𝑖)

) + 𝑓(𝑅) + 𝑓(𝑣𝑠𝑚+1) ≥ 𝑚 (
𝑠−1

2
) + 𝑚 + 1 = 𝑚 (

𝑠+1

2
) + 1. Now we 

establish the upper bound by conducting a PIDF of collective weight  𝑚 (
𝑠+1

2
) + 1 on 𝐽𝑠,𝑚. First, for 1 ≤ 𝑖 ≤ 𝑚 

we divide each path 𝑃𝑠−1
(𝑖)

 into two sets 𝐸𝑃𝑖  and 𝑂𝑃𝑖  defined as: 

𝐸𝑃𝑖 = {𝑣2𝑙+(𝑖−1)𝑠: 1 ≤ 𝑙 ≤
𝑠 − 1

2
} ; 𝑂𝑃𝑖 = {𝑣2𝑙−1+(𝑖−1)𝑠: 2 ≤ 𝑙 ≤

𝑠 − 1

2
} ;  

We also define: 

𝐸𝑃 = ⋃ 𝐸𝑃𝑖

𝑖=𝑚

𝑖=1

;   𝑂𝑃 = ⋃ 𝑂𝑃𝑖

𝑖=𝑚

𝑖=1

. 

 

We define the following PIDF (denoted 𝑓′) on 𝐽𝑠,𝑚 so that for 1 ≤ 𝑖 ≤ 𝑠𝑚 + 1: 

   

𝑓′(𝑣𝑖) = {
1 𝑖𝑓 𝑣𝑖 ∈ {𝑂𝑃 ∪ 𝑅 ∪ {𝑣𝑠𝑚+1}};                

0 𝑣𝑖 ∈ 𝐸𝑃.                                                     
 

 

𝑤(𝑓′) = |𝑂𝑃| + |𝑅| + 1 =
𝑠𝑚

2
+ 𝑚 + 1 = 𝑚 (

𝑠+1

2
) + 1, therefore 𝛾𝐼

𝑝
(𝐽𝑠,𝑚) ≤ 𝑚 (

𝑠+1

2
) + 1. Figure 11 shows that 

𝛾𝐼
𝑝

(𝐽5,4) ≤ 13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Conclusions 

In this paper, we studied the perfect Italian domination problem on some graph classes. We determined the perfect 

Italian domination number of the circulant graph 𝐶𝑛{1,2} for 𝑛 ≥ 5 and introduced an upper bound for the perfect 

Italian domination number 𝐶𝑛{1,3} when 𝑛 ≥ 7. We also found this parameter for generalized Petersen graph 

𝑃(𝑛, 2) when 𝑛 ≥ 5. We determined 𝛾𝐼
𝑝(𝑃2 ⊠ 𝑃𝑛) and 𝛾𝐼

𝑝(𝑃3 ⊠ 𝑃𝑛) for arbitrary 𝑛 ≥ 2, then we introduced an 

upper bound for 𝛾𝐼
𝑝(𝑃𝑚 ⊠ 𝑃𝑛) when 𝑚, 𝑛 ≥ 2 are arbitraries. Finally, we determined the perfect Italian domination 

number of Jahangir graph 𝐽𝑠,𝑚 for arbitrary 𝑠 ≥ 2 and 𝑚 ≥ 3. 
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