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Abstract

A function f:V(G) - {0,1,2} is called a Perfect Italian dominating function (PIDF) of a graph G = (V,E) if
Yvenw) f(v) = 2 for every vertex u € V(G) with f(u) = 0. The weight of an PIDF is w(f) = ¥,ey f(v). The
minimum weight of all Perfect Italian dominating functions that can be conducted on a graph G is called the perfect
Italian domination number of G and is denoted by ¥/ (). In this paper, we study the problem on different graph
classes. We determine the perfect Italian domination numbers of the circulant graphs C,{1,2} for n > 5 and give
upper bounds for ¥/ (C,{1,3}) when n > 7. We also find this parameter for generalized Petersen graph P(n, 2)
when n > 5. We determine y? (G) of strong grids P, X P, and P; [X B, for arbitrary n > 2, then we introduce an
upper bound for y/ (P,, X B,) when m,n > 2 are arbitraries. Finally, we determine the perfect Italian domination
number of Jahangir graph J; ,,, for arbitrary s > 2 and m = 3.

Keywords: perfect Italian dominating function; perfect Italian domination number; Circulant graph; generalized
Petersen graph; strong grid; Jahangir graph

1. Introduction

Let G = (V,E) be agraph with |V| = n vertices and |E| = m edges. The open neighborhood of a vertex v € V is
N(v) ={u € V:uv € E} and the closed neighborhood of v is N[v] = N(v) U {v}. The degree of a vertex v
(denoted by deg(v) ) is the number of all vertices that are adjacent to v. Therefore, deg(v) = |N(v)|. The distance
d(u, v) between two vertices u and v of a finite graph is the minimum length of the paths connecting them [1].
Let Y € V and let F be a subset of E such that F consists of all edges of G which have endpoints in Y, then H =
(Y, F) is called an induced subgraph of G by Y and is denoted by G[Y]. A dominating vertex set of any graph G =
(V,E) is a subset D < V satisfies that each vertex v € V — D is adjacent to at least one vertex from D. The
minimum cardinality of all dominating sets of a graph G is called the domination number of G and is denoted by
y(G). A dominating set D is a perfect dominating set if it satisfies that for every vertex v € V — D; IN(v) N D| =
1. The minimum cardinality of all perfect dominating sets of G is the perfect domination number of G (denoted
¥p(G)). For more information on perfect domination in graphs see [2]. For any undefined term in this paper, [3] is
recommended.

In mathematics, it is very common to conduct functions on different mathematical structures in order to achieve a
certain optimization, see [4], let f be a function defined on the vertex set V of a graph G, the weight of f is the
accumulated weight assigned by f to all vertices of G, i.e., w(f) = Y,ey f(v). An Italian dominating function
(IDF) of agraph G is a function f: V(G) — {0,1,2} so that for every vertex u € V, if f (u) = 0 then Ypen f (V) =
2. The Italian domination number of G, denoted by y, (G), is the minimum weight of all IDFs of G. This parameter
was first introduced by Chellali et al. [5]. The problem was studied on trees by Henning et al. [6]. VVarghese et al.
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[7] determined the Italian domination number of Sierpinski graphs. Gao et al. determined the Italian domination
numbers of generalized Petersen graphs P(n, 1), P(n, 2) [8] and P(n, 3) [9].

Perfect Italian domination is a variation of the Italian domination problem that was introduced by Henning et al.
[6]. A perfect Italian dominating function (PIDF) of a graph G is a function f: V(G) — {0,1,2} that satisfies the
following condition, for every vertex u € V, if f(u) = 0 then Y, ey, f(v) = 2. The minimum weight of all
PIDFs that can be conducted on a graph G is called the perfect Italian domination number of G and is denoted
byy/ (¢). Henning et al. [6]. found y” (G) for some simple graphs such as paths and cycles. Varghese et al. [7]
determined the perfect Italian domination number of Sierpinski graphs. Lauri et al. [10] studied the problem on
planar, regular and split graphs. For more information on perfect Italian domination, see Haynes et al. [11],
Banerjee et al. [12] and Pradhan et al. [13]. Varghese et al. [14] studied the relationship between the perfect Italian
domination number of the Mycielskian of a graph and the perfect domination number of the graph. They also
obtained the perfect Italian domination numbers of the cartesian products P,0P, and K,,0K, for any
arbitrarym,n > 1.

The circulant graph C,,(S) [15] with the connection set S < {1,2, ..., n} is a simple undirected graph which has the
vertex set V = {vy, v,, ..., v, } Where subscripts are taken modulo n. Any two vertices v;, v; € V are adjacent if and

only if |i — j| € S. Therefore, the circulant graph C,{1,7};2 <r < BJ is 4-regular.

The generalized Petersen graph P(n, k) withn > 1and1 < k < l"%lj is a 3-regular, simple and undirected graph
with the vertex set V ={u;,v;:1<i<n} and the edge set E = {u;v;, uju;y 1, ViVisx * 1 < i <n} where
subscripts are taken modulo n. It is obvious that [V (P(n, k))| = 2nand |E(P(n, k))| = 3n For more information
on the generalized Petersen graph, see [16].

We define the strong product of two paths P, and P, (also called a strong grid) as the graph P,,XIP, such that
V(B,XP,) =V(P,xB)={(i,j):1<i<m, 1<j<n}andtwo vertices (i,i"), (j,j') are adjacent if and only
if:

e jisadjacenttojand i’ =j'.

e j(=jandi'isadjacentto;'.

e jisadjacenttojand i’ isadjacentto j'.

For more information on strong grids, see [17]. The Jahangir graph J(s, m) with s,m > 2 is a simple undirected
graph on sm + 1 vertices. It consists of a cycle C,,, and a central vertex v,,,, that is adjacent to m vertices of
Csm Which are {v;,;:1 < i <m— 1}. i.e,, the distance between every two consecutive vertices of degree 3 on
Cgm IS s. We denote the set {v;,;: 1 < i < m — 1} by R. For more information on Jahangir graph, see [18].

In this paper, we determine the perfect Italian domination number of the circulant graph C,{1,2} for n > 5 and
introduce an upper bound for the perfect Italian domination number C,{1,3} when n > 7. We also find this
parameter for generalized Petersen graph P(n, 2) when n > 5. We determine y/ (P, X P,) and y} (P; X B,) for
arbitrary n > 2, then we introduce an upper bound for y/ (B, X B,) when m,n > 2 are arbitraries. Finally, we
determine the perfect Italian domination number of Jahangir graph J; ,,, for arbitrary s > 2 and m > 3.

Proposition 1 [6]: For any graph G = (V,E); ¥F (G) = v,(G).

n+1
> |

Proposition 2 [6]: For any path P, withn > 2; ¥/ (G) = [

Proposition 3 [8]: Let P(n, 2) be a generalized Petersen graph with n > 5, then:

4n

[?] if n=0,3,4(mod 5);
YI(P(n' 2)) ~Yr4n

[?] +1if n=1,2(mod 5).
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Note 1: In the upcoming sections of this paper, we will use the term weight of a vertex v to represent the assigned
number to v when conducting a PIDF on the studied graph. We will also use the term imperfect vertex to represent
avertex v with f(v) = 0 and Yyenw) f (W) # 2.

Note 2: Let f:V(G) - {0,1,2} be aPIDFon G = (V,E) and let H = (V',E") be a subgraph of G, the weight of
H inrelation to f is the accumulated weight assigned by f to all vertices of H, i.e., f(H) = Y,y f (V).

Note 3: A proper PIDF f:V(G) — {0,1,2} separates V(G) into three subsets {V,,V;,V,} so that for any [ €
{021}, Vi={veV;f(v) =1}

Note 4: In all figures of this paper, we will represent a vertex v by a white circle and the assigned number to v
when conducting a function on the studied graph by a small number placed inside the circle. If v is imperfect
(f(v) = 0and Xyencw) f(w) # 2) then the circle representing v is placed inside a square.

2. Results

2.1. The perfect Italian domination number of the circulant graphs €,{1,2} and C,{1, 3}.

In this sub-section we obtain y” (C,{1,2}) for n > 5. We also obtain y} (C,{1,3}) when n = 0(mod 5) then
we present upper bounds for y? (C,{1,3}) whenn = 1,2,3,4(mod 5) and n > 7.

Theorem 1. For n = 5, let €,,{1,2} be a circulant graph,

n
Lz = 3.
Proof: We consider the following cases for n:

Case 1. n = 0(mod 3). We begin by dividing V(C,{1,2}) into g blocks each of which consists of three vertices
and we denote them as follows: B; = {vsi_3, V3i_1, V3i}: 1 < i < g

Let f:V(G) - {0,1,2} be an arbitrary PIDF conducted on C,{1,2}. Let us prove that y} (C,{1,2}) > g according

to f. We assume that y/ (Ca{1,2}) <% — 1. This means for at least one of B, € {Bi: 1<i< g} f(B,) =0,
which means f(vsx_,) = f(v3x—1) = f(vsx) = 0. We notice the following:

e Since f(v3x_2) = f(v3x) = 0then f(vsy_3) + f(v3441) = 2. Otherwise wvg,_; is imperfect and thus
f:V(G) - {0,1,2} is not a PIDF which is a contradiction.

e Since f(v3x_1) = f(v3x) = 0 then f(vs,_y) + f(v34_3) = 2. Otherwise v, _, is imperfect.

o Since f(vs3y_5) = f(v33_1) = 0then f(vayy1) + f (Vsxs2) = 2 Or else vy, is imperfect.

We conclude that f(vsx—3) + f (Vax+1) + f(Vax41) + f(Vaxe2) = 4, Which means f(Byx_1) + f(By41) = 4 if

f(By) = 0. We notice that there are two possible configurations of f values on B,_, By, By,, Which achieve

f(Bx_1) + f(Bys1) = 4 when f(B,) = 0. They are:

Configuration 1: 011-000-110;
Configuration 2: 002-000-200.
Figure 1 shows that for each of these configurations:

o f(By_p) = 1orelse vs,_g is imperfect.
o f(Bysz) = 1orelse vay,, is imperfect.
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Figure 1. The weight configurations that achieve f(By_1) + f(Bx+1) = 4 when f(By) = 0.

Without loss of generality, we conclude that every three consecutive blocks of €, {1,2} have an accumulated weight
n

n

larger than 2, this means Y!=%72 f(B;) + Zi:f” f(B) = 7 — 3. Therefore, y (C4{1,2)) = EnfB) = g -
3+ f(Bx-1) + f(By) + f(Bys1) whichmeans y? (C,{1,2}) = g— 3+4= g + 1 and this is a contradiction to the
assumption that ¥/ (C,{1,2}) = g — 1, therefore no subgraph of {B;: 1 <i < %} is of accumulated weight 0 if
n = 0(mod 3) and we establish the lower bound:

w3

¥ (Ca{1,2}) 2 @)

To prove that y/ (C,{1,2}) < g it is enough to conduct a PIDF of accumulated weight 2 on C,{1,2}. Let f":V —
{0,1,2}andfor1 <i < n:

1if i = 1(mod 3);
0 otherwise. '

) ={

We notice that f' is a PIDF on (C,{1,2}) and w(f") = 0|V,| + 1|V;| = 0(2?") +1(3) = 5. Which means if n =
0(mod 3);

ylp (Cn{l'z}) <

w| 3

)
From (1) and (2) we conclude that ¥ (C,{1,2}) = g if n = 0(mod 3).

Case 2. n = 1(mod 3). We use the same segmentation established in Case 1 on V — {v, }, which means the EJ =
nT_l blocks are defied as B; = {v3i_3, V3i—1, V3i1: 1 < i < nT_l while v, forms a mini-block (denoted M) on its own.
Let £:V(G) — {0,1,2} be an arbitrary PIDF on C,{1,2} and let us assume that y” (C,{1,2}) = nT_l by following
P22 f(B) + f(Bia) + f(Bisz) = 3and

3

the same argument of Case 1 we conclude that for 2 < i <
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ry =27 ®)

Now we study the minimum possible weight of f(B;) + f(Bn-1) + f(M). It is obvious from our previous
3
argument that f(B;) + f(Bn-1) + f(M) = 2. Let us now assume that f(B;) + f(Bn-1) + f(M) = 2. There are
3 3
(;) = 21 different configurations to distribute two vertices of V; on B, U Bn—1 U M. The following table shows

3
twelve of these configurations taking into consideration that each one of the remaining nine configurations is
symmetric to one of the first nine configurations listed in Table 1. Each double underlined zero of Table 1
represents an imperfect vertex.

Table 1: Different configurations to distribute two vertices of V; on B; U Bn-1 UM
3

. . Bn-1UMU Bl

Configuration Number 3

1 000-0-011

2 000-0-101

3 000-1-001

4 001-0-001
We notice from 5 010-0-001 Table 1 that
configurations 8, 9, 10 are the only
configurations 6 000-0-110 that do  not
directly produce imperfect vertices
on Bn-1UMU 5 000-1-010 B;. We discuss

3

these three 001-0-010 configurations as
follows: 8

9 000-1-100

10 001-0-100

11 010-0-010

12 100-0-001

Configuration 8: 001-0-010.

As shown in Figure 2, when configuration 8 is applied:

o f(vp_y) =1orelse Yenw, ,) f(v) =1 which means f(v,_s) = 0orelse Y,enw, 5 f(v) = 3.

o f(v)+f(vs) =1 orelse Y ,enw,) f(v) =1,3,4,5if f(v3) + f(vy) = 0,2,3,4 respectively.
e Iff(vy_e) = 1then f(Bn-7) = 2. However, f(Bn-10) = 1 or else ¥ yenew,_,) f(¥) = 1.
3

3
o Iff(vy_s) =1, f(vh_5) = f(vn-e) = 0 then f(v,_;) = 1 orelse Ypenw,_ ) f(v) = 1, the same argument
applies to f(v,_10) and the minimal pattern continues as ...-001-001-001. We call this pattern: Left Pattern.
e Iff(vs) =1then f(B,) = 2.
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o Iff(v) =1, f(vs) = f(ve) = 0then f(v;) = 1orelse Y,enws) f(v) = 1, the same applies to f(vy,) and
the minimal pattern continues as 100-100-100-..., we call this pattern: Right Pattern 1 and it is illustrated in
Figure 2.a.

o Iff(vs) =1, f(vy) = f(v) = 0 then f(vg) = 1 0orelse Yyenw, f(v) = 1, the same applies to f(v;4) and
the minimal pattern continues as 010-010-010-..., we call this pattern: Right Pattern 2 and it is shown in

Figure 2.b.
BnT—7 BnT—zx BnT_l M| B B, Bs
o oo T o By I
Buy | Bus | Busx |M| B B, B
2.b
- ' DO D OO ® -
NGV I Nl Y IR IS DRSS

Figure 2. Applying configuration 8 on Br-1 U M U B; whenn = 1(mod 3).
3
In order to achieve minimality, f(vy) = f (v,_s) = 0, which means we have two patterns applied to V — {v;: 2 <
i< "7_4} at the same time (a right pattern and the one left pattern). However, in both cases a block of the left pattern

must be adjacent to a block of a right pattern. Figure 3.a shows that if B; € Right Pattern 1 and B;,; €
Left Patternthen  Yoenw,) f(V) = Xvenws,pf(w) =1.  Figure  3b  shows that if Bj€
Right Pattern 2 and B;,, € Left Pattern then ¥, ey, f(v) = 1.

3.a 3.b
Bi Bi+1 Bl Bi+1
—— —
— _Soplod- - - -0ooRlb®
Al R RPN e
&n? Q® Qﬂ? Qﬁ? Qn? Qn? Q” Qﬂ? oy Qﬂ?

Figure 3. The pattern interactions of configuration 8.

Configuration 9: 000-1-100.

Figure 4 shows that when configuration 9 is applied, f(v,_5) = f(vn-4) = 1 Or €lse Yyen,_o) f () < 2. This

"‘31°+3+2

means either f(v,,_¢) = 1 which makes Y,c, v =
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BnT_7 BnT—zL BnT_l M B, B, B3
Liatalulotoal ool ulatulota¥osss
«Q: Q‘"/ Q*‘/ .QQ/@ ,QJ, .QJ QY .QQ' ,Q'Q‘ QY[R S RN N

Figure 4. Applying configuration 9 on Br-1 U M U B; when n = 1(mod 3).

3

and that is a contradiction, or f(v,_¢) = 0 which means f(v,_g) = f(v,_7) = 0 or else X ,enw, o f (V) > 2.
Therefore, f(v,,_9) = 1 and thus the pattern continues as ...-100-100 (Left Pattern). In a similar way, f(v,) +
f(vs) = 1orelse Yyenwsy f(v) # 2. However, f(v,) = 0 or else ¥, enw,) f(v) = 3. Therefore, f(vs) =1 and
the pattern continues as 010-010-... (Right Pattern). As Figure 3.b shows, an imperfect vertex (vs;) is obtained
when these two patterns meet i.e., when B; € Right Pattern and B;,; € Left Pattern.

Configuration 10: 001-0-100.

As shown in Figure 5 when configuration 10 is applied, f(v,_,) = 1 otherwise, ¥ en(w,_,) f(v) # 2. The same
argument applies to v,,_, and the left pattern continues as:

Left Pattern: ...-001-001.

Bn_—7 Bn-4 Bn-1 M Bl B, Bg

3 3 3

© ’0 0'0'0 0’0’0 0 ofofo! blofol oo e

o P N A | A o CRR: I
'Q.Qt ,Q'Q‘ QQ QQ Q,Q' N &Q QQ QYR R Q QA7 Q7 Q Q' Q7

\7

Figure 5. Applying configuration 10 on Br-1 U M U B; when n = 1(mod 3).

3
In a similar way, f(v,) = 1 orelse Yyenew,) f(v) # 2 and the right pattern continues as:

Right Pattern: 100-100-...

As shown in Figure 3.a, two imperfect vertices (vs;, v3i44) are obtained when these two patterns meet i.e., when
B; € Right Pattern and B;,, € Left Pattern.

It is obvious that replacing the two vertices of weight 1 by one vertex of weight 2 does not change the outcome of
any configuration. From all the above we conclude that f(B;) + f(Bn-1) + f(M) > 2, which means:
3

f(Bl)+f(Bn_—1)+f(M)23 4)
From (3) and (4) we obtain the lower bound ¥ (C,{1,2}) = — 743 = [ ] if n = 1(mod 3).

To prove that y/’ (C,{1,2}) < [2] we conduct a PIDF of weight E] on C,{1,2}. WE choose this PIDF to be f":V —
{0,125 for1<i<n: f'(v) = {tlgt;l;;l(;relod 3);

n+2

w(f") = 0|Vy| + 1|V4| = 0(2" 2) + 1(—) =—= E] Therefore, y7 (C,{1,2}) < E] By comparing the lower

and the upper bounds, we prove that y, (Cn{l,Z}) = E] if n = 1(mod 3).

32
DOI: https://doi.org/10.54216/GJMSA.0110104
Received: October 25, 2023 Revised: February 27, 2024 Accepted: June 27, 2024



https://doi.org/10.54216/GJMSA.0110104

Galoitica: Journal of Mathematical Structures and Applications (GIMSA) 1ol 11, No. 01, PP. 3546, 2024

Case 3. n =2(mod 3). Let f:V(G) - {0,1,2} be an arbitrary PIDF on C,{1,2} and let us assume that

P (Ca{1,2) < ns—z We use the same segmentation of Case 1 on V —{v,_;,v,}, therefore B; =

{v3i_2, V3i_, V311 <0 < nT_Z and for2 <i <2 ; f(By) + f(Bis1) + f(Biy2) = 3 which means:

="

> eyt ©)
i=2

It is obvious that £ (B;) + f(Bn-2) + f(M) = 2. By constructing the (%) = 28 different possible configurations
3
to distribute two vertices of V; on B; U Brn—1 U M which is of cardinality 8, we notice that 26 of them directly
3
produce at least one imperfect vertex. We discuss the two remaining configurations:

Configuration 001-00-100: Figure 6.a shows that:

f(vy) = 1orelse Xpenw, f(v) # 2.
f(wn_s) = 1orelse Lyenw,_ o (W) # 2.
f(vs) = 0orelse Ypenwy f(V) # 2.
f(vn_e) = 0o0relse Xyenw,_ o f (v) # 2.
n+1

f(ve) = f(v,—;) = 0orelse Zl 5 f(B) > —WhICh makes y7 (Cp{1,2}) = —

f(vi0) = f(v;) = 1 and the pattern continues as 100-100-... (Right Pattern).
f(Wp_11) = f(v_g) = 1 and the pattern continues as: ...-001-001 (Left Pattern).
onflguratlon 000-11-000: Figure 6.b shows that:

10. f(vy) + f(vs) = 2 0relse Ypenw,) f(V) # 2.

11. f(vn-e) + f(Vy_s) = 2 Or else Yyen(w,_, f(V) # 2.

12. f(ve) = f(Vp_10) = 1 0relse Ypenew,) f (V) # 2, Xven(w,_g) f (V) # 2 (respectively).

13. f(vg) = f(vn-o) = O Orelse Yoenwe) f (V) # 2; Xvencw,_, f (V) # 2 (respectively).

14. f(vy0) = 1 orelse Ypenw, f(v) # 2. Similarly, f(vy3) = 1 and the pattern continues as: 100-100... (Right

QOU©® N o0k ow

Pattern).
15. f(vp-11) = 1 orelse Ypenwy) f(v) # 2. Similarly, f(v,_,4) = 1 and the pattern continues as: ...-001-001
(Left Pattern).
Bn-7 Bn-4 Bn1 | M B4 B, B;
3 3
6.a
TS ST SESS S TS ST SO S
B Y010 D¥OY6 Y016 010! BE0Y0 HroR0 BYoYe
a: M’Q&f ¢ &f ,QJ) QJQ&?QJ’ QQ{N N BN M BN ENP N
Bn-7 Bn-4 Bn1 | M B, B, B3
3 3 3
6.b
TS ST RS S TS ST SO S
QOO0 6O E-OLOO
QQP :QQO‘,Q'Q‘% o mﬂ’b g: a/v.a:m: ,QQ{N IS ESEEAE N ENSNN ORI N

Figure 6. Applying configurations 001-00-100 and 000-11-000 on Br-1 U M U B; when

3

n = 2(mod 3). 33
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For both patterns and as shown in Figure 3.a, if B; € RightPattern and B;,; € Left Pattern then

Z‘UEN(V3i)f(U) = ZveN(v3i+1)f(v) =1

It is obvious that replacing the two vertices of weight 1 by one vertex of weight 2 does not change the outcome of
any configuration. From all the above we conclude that:

f(31)+f(BnT—2)+f(M) =3 (6)

From (5) and (6) we prove that y? (C,{1,2}) > "T_S +3= E] when n = 2(mod 3). Now we conduct the function
1if i = 1(mod 3);

Vo {01)forl<i<n: f'(v) = {0 i

2n—4 n+1 n+1

Since f" is a PIDF of weight T,e, f' () = w(f") = 0Vol + 1|3 | = 0% + 1(50) = 2 = [g] on C,{1,2}

we conclude that 7 (C,{1,2}) < E] when n = 2(mod 3). Therefore v/ (C,{1,2}) = E] when n = 2(mod 3).

From all the previous cases we obtain that for n > 5; yF (C,{1,2}) = E]l
Theorem 2. For n = 7, let C,,{1,3} be a circulant graph,

i yP (Ca{13) == if n = 0(mod 5).

2 [EJ +1 if n = 1(mod 5);
iyf ({13 <{
2 IEJ +2 if n = 2,3,4(mod 5).

Proof: We consider the following cases for n:

Case 1. n = 0(mod 5). We start by dividing V(C,{1,3}) into % blocks each of which consists of five vertices and
we denote them as B; = {Vsi_4, Vsi_3, Vsi—2, Vsi—1, Vsii 1 < 0 < g Now Let f:V(G) — {0,1,2} be an arbitrary
PIDF conducted on C,{1,3}. First, we will establish the lower bound y? (C,{1,3}) = 2?71 according to f. We assume

that v/ (C,{1,3}) < 2?"— 1. This means for at least one B, € {Bi: 1<i< %} f(By) = 1. We discuss all the
possible configurations that include exactly one vertex of V;, on By:

Configuration 00001: Figure 7.a demonstrates this configuration, we notice that:

o f(Vsx1) + f(Vsxa2) + f(Vsx—5) = 3. 1.8, f(Vsxs1) = [ (Usxs2) = f(Usx—s5) = 1. Otherwise vgy_5, Vsy_q
are imperfect.

o f(vsx—g) = 1o0relse vs,_5 is imperfect.

o  f(vsg—7) = 1orelse vs,_, is imperfect.

o If f(Wsgs3) = f(Wsgsa) = f(Vsges) = 0 then f(By,,) = 2. Otherwise, at least one vertex of vgy, 4, Vsxys IS
imperfect.

o  f(By_,) = 2. Otherwise, at least one vertex of vgy_11, Vsx_10, Vsx—o IS imperfect.

We conclude that f(By_;) + f(Bx—1) + f(By) + f(Byy1) + f(Bxy2) =2+ 3+ 1+3+2 =11 if B, follows

configuration 00001.

Configuration 00010: Figure 7.b demonstrates this configuration. We observe that:

f(vsx_6) = 2. Otherwise, vs,_5 is imperfect.

f(Wsx—s) + f(Vsgi1) + f(Vsx43) = 2. Otherwise, at least one of vg,_,,vs, IS imperfect.

f(wsx_7) + f(vsg_s) = 1. Otherwise, vs,_, is imperfect.

If f(Vsx—5) = 0 then f(Vsx_o) = f(Vsy—g) = f(Vsx—7) = 0 or else f(By_4) = 4. This means f(vsx_g) =
f(vsx—10) = 0 or else vs,_, is imperfect. It can also be concluded that f(vsy_q5) = 0 or else vgy_q iS
imperfect. This means f(vsy_13) + f(Vsx_11) = 2 0Or else vs,_4, is imperfect. We conclude that f(By_,) =
2. A similar argument can be made if f(vs,_,) = 0.
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o f(Usys1) + f(vsgs3) = 1 0Or else vg, is imperfect. Let us assume that f(By,1) = 1, then vg,,, is imperfect
if  f(Usxe1) =0 and f(vsei3) = 1. Let us assume that By,; = 10000, then f(vsyye) + f(Vsxs7) +
f(vsx4g) = 3 with the assigned weights 1-1-1. This means f(By,) = 3.

We conclude that f(By_;) + f(Bx—1) + f(By) + f(Bgy1) + f(Byyz) =22+3+1+1+3+2=10 if B
follows configuration 00010.

Configuration 01000: is symmetric to configuration 00010.
Configuration 10000: is symmetric to configuration 00001.

Configuration 00100: demonstrated in Figure 7.c. We notice that;

BX—Z Bx—l Bx Bx+2

Bx+1
R TP TN ST
BoTeTerere| O10[010F0 (0101010101 OTOIOT0I0 -
Q4 N O =3 . N
NN NN TR AR s N N n ow o |29 A SRS
o ¥ S Phd PR SR X PR 2 XN
\ 'Qb’ ,Q‘O+ ,Q"J* R Qlo ,Ql” ,Q‘O+ Ql; 'Q‘O* Q"’ Q‘Q# 'on'*‘ Q(;P :Qb’*%

7 b BX—Z Bx—l Bx Bx+1 Bx+2
RSN
s STROTO SO0 _
N +7’/1\°;o+/7’f\,~ gé‘fﬂ:v@f«%ms

N
/ / RN 5. S ARG 4 & s o ® K X PR X
S P AR St N Gl S

By By 1 B, Byi1 B2

19000 -

L
S RN
N7 Q3% A Q8

Qlo

Figure 7. All different configurations that include exactly one vertex of V/; on B,.

f(Vsx—6) = f(Vsgs2) = 1. Otherwise, vs,_5, Vs, are imperfect (respectively).

f(Wsx—7) + f(vsx_s) = 2. Otherwise, vs,_, is imperfect.

f(Wsxs1) + f(Wsyy3) = 2. Otherwise, v, is imperfect.

f(Wsx—g) = f(vsx_g) = 0. Otherwise, f(Bx_;) = 4. This means: f(vs,_,,) = 0 or else vg,_g is imperfect,
f(Wsx_12) + f(Vsx_10) = 1 or else vg,_o is imperfect.

If f(Vsx—10) = 1and f(vsx_12) = 0then f(vsy_14) = 1 Orelse vg,_,, is imperfect.

If f(Vsx—10) = 0and f(vsy_1,) = 1then f(vsy_14) = 1 Or else vg,_4, IS imperfect.

We conclude that f(By_,) = 2 when f(vsyx_q) = f(vsx_g) = 0.

o f(Vsxsa) = f(Vsxes) = 0. Otherwise, f(By,r1) = 4. This means: f(vsy,.7) = 0 or else vs,,, is imperfect,
f(Vsyye) + f(Vsxeg) = 1 Or else vgy, 5 is imperfect.
If f(Vsxe6) = 1and f(vgyyg) = 0 then f(vsyyq0) = 1 Or else v, is imperfect.
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If f(Vsge6) = 0 and f(vsyrg) = 0 then f(vsyy10) = 1 Or else vgy,, is imperfect.
Therefore, f(Byy2) = 2 When f(Vsy44) = f(Vsx4s) = 0.

We conclude that f(By_5) + f(By_1) + f(By) + f(Bys1) + f(Bxyz) =2+ 3+1+3+2 =11 if B, follows
configuration 00100. From all the above and without loss of generality, we observe that the weight of any five

consecutive blocks is at least 10. Therefore, ¥/ (C,{1,3}) = Z::ff(Bi) > 2?" if n = 0(mod 5). Now we establish
the lower bound by conducting a PIDF of weight 2?" on C,{1,3}. Let this PIDF be f":V — {0,1,2};for1 <i<n
then f'(v,) = {1 if i =0,1(mod 5);

0 otherwise.

Wi =Y e =0kl =0 () +1(3) =2

Therefore, yF (C,{1,3}) < 2?" if n = 0(mod 5). By comparing the lower and the upper bounds we conclude that
YP(Ca{1,3]) = 2?" if n = 0(mod 5).
For the remaining cases, we also establish the upper bounds for ¥ (C,{1,3}) by conducting a PIDF (denoted f”)
of weight y (C,{1,3}) for each case.

Case 2. n = 1(mod 5). The PIDF (f) is defined as:
1if i = 0,1(mod 5);
0 otherwise.
3(n—1 2(n—1
o= Zf’(v) = 0Vl + 11Vl = 0( (ns )> 1 <( (ns )) + 1) =z EJ + 1.
veV

We conclude that y? (C,{1,3}) < 2 EJ +1if n=1(mod 5).

1V > (0,12} for 1 < i <nthen f'(1) = {

Case 3. n = 2(mod 5). The PIDF is:

1if i=0,1(mod5) or i =n;
0 otherwise.

w(f') = 0|Vo| + 1|V;| = 0 (3(n5_ 2)) +1 ((z(ns_ 2)) + 2> =2 [g] +2.

fiV-{012}forl<i<nthenf'(v;) = {

This means 17 (C,{1,3)) < 2 |%| + 21if n = 2(mod 5).

Case 4. n = 3(mod 5). We conduct the following PIDF on C,{1,3}:
1ifi=0,1(mod5) or i =n;
0 otherwise.

w(f') = 0|V + 1|V, ] = 0(3(n_ 3)) + 1((2(n — 3)) + 2> =2 [g] +2.

f1:V > (01,2} for 1 < i <nthen f'(1y) = {

5 5

Therefore ¥ (C,{1,3}) < 2 EJ + 2if n = 3(mod 5).

Case 5. n = 4(mod 5). Let the PIDF be:
1ifi=0,1(mod5) or i =n;
0 otherwise.

W(F) = OlVal + 11Vl = 0 (3(715— 4)) +1 ((Z(ns— 4)) n 2) =2 lg] + 2.

f:V > {0,1,2); for 1 < i <nthen f'(v;) = {
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This means 7 (Ca{1,3}) < 2 [gj +2if n = 4(mod 5).

From all five cases we conclude the requested. ®

2.2. The perfect Italian domination number of generalized Petersen graph P(n, 2).
In this section, we determine y/ (P(n, 2)) forn > 5.

Theorem 3. Forn > 7, let P(n, 2) be a generalized Petersen graph,

4n

[?] if n=0,3,4(mod 5);

ylp (P(Tl, 2) )= An
[?] +1if n=1,2(mod5).

Proof: As an immediate consequence of Proposition 1 and Proposition 3, we obtain the lower bound:

[4?”] if n = 0,3,4(mod 5);
WPm)zyn(P2) =12
[?] +1if n = 12(mod 5).

Now we establish the upper bound ¥ (P(n,2)) < y,;(P(n, 2)) by conducting a PIDF of weight y,(P(n,2)) on

P(n,?2).
Casel.n =0(mod 5). Let f":V - {0,1,2};for1 <i<n:

, _(0ifi=1,3,4(mod 5);
fw) = {1 if i = 0,2(mod 5).

, _(0ifi=0,1,2(mod5);
fiwd = {1 if i = 3,4(mod 5).

We notice that f' is a PIDF of weight:

)y

'—0|V|+1|V|—o(3"+3")+1 +
w(f") = 0[V, 1l =0{~ =t z =

5

This means 17 (P(n,2) ) < [2] if n. = 0(mod 5).

Case 2. n = 1(mod 5). We choose f":V — {0,1,2};for1 <i < n:

flaw) = {0 if i =1,3,4(mod 5) and i # n;
YW =1 if i = 0,2(mod 5) or i = n.

Flw) = {O if i=0,1,2(mod 5)and i # n— 1;
o= 1ifi53;4(m0d5)07”i=n—1_

f'is a PIDF of weight:
w(f') = 0|Vo| + 1|4 ]
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(0 A0y )y (A0 200y ) e o]y

Therefore, yP (P(n,2)) < [4?”] +1ifn = 1(mod 5).

Case 3. n = 2(mod 5). The chosen PIDFis f":V — {0,1,2}; for1 < i < n:

Frluy) = {0 if i =1,3,4(mod 5) and i #n —1;
Y=Wifi=02(mod5)ori=n—1.

flw) = {0 if i =0,1,2(mod 5)and i # n — 2;
= 1lfl 53,4(m0d5)07'i =n-2.

w(f’) = 0[Vo| + 1|V1]

This means ¥y (P(n,2)) < [4?”] +1ifn = 2(mod 5).

Case 4.n = 3(mod 5). The PIDFis f":V - {0,1,2};for1 <i<n-—3:

. (0if i =134(mod 5);
i) = {1 if i =0,2(mod5).

, _(0ifi=0,1,2(mod 5);
f'o) = {1 if i = 3,4(mod 5).

f'un—2) = f'(un-1) = f' (1) = 0;
f'(un) = f'(Un—2) = f'(Up-1) = 0

w(f") = 0[Vol + 1|1

-0 (3(n 3) 4303 3(n 3) + 3) (2(n5—3) +@+ 3) _ 4n5+3 _ [4?71]

Therefore, yP (P(n,2)) < [4?”] if n = 3(mod 5).

Case 5. n = 4(mod 5). ThePIDFis f:V - {0,1,2};for1 <i <n—4:

.. _(0if i =1,34(mod 5);
i) = {1 if i = 0,2(mod 5) .

.« _(0if i=01,2(mod5);
f'o) = {1 if i = 3,4(mod 5).

fun-2) = f'(Un-1) = f'(Wp-3) = f'(vn) = 0;
f'un3) = f'(un) = f'(vp-2) = f'(0p-1) = 1;
w(f") = 0[Vo| + 1|V

~0 (3(n5 9 | 3-8 3(n 9 L 4) 1 (Z(ns 4) +@+ 4) _ 4-n5+4 _ [4-?11]

Which means y? (P(n,2)) < [Sn] if n = 4(mod 5).
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From all the previous cases we establish the lower bound y? (P(n,2)) <y, (P(n, 2)) and by comparing the upper
and lower bounds we conclude that for n > 7:

%] if n = 0,3,4(mod 5); i

v (P(n,2)) =y,(P(n,2)) =1, ,
[?] +1if n=1,2(mod 5).

2.3. The perfect Italian domination numbers of Strong grids P,,, X P,,.

In this section we determine y (P, X B,) and ¥/ (P; X B,) for arbitrary n > 2, then we introduce an upper
bound for y/ (B,, X1 B,) when m,n > 2 are arbitraries.

Note 6: We denote the rows of B, X B, by R;: 1 < i < m. We also denote the columns by CO;: 1 < j < nand we
denote the vertex of row i and column j by (i, j).

Theorem 4. For n > 2, let P, X B, be a strong grid graph;
n
p =2|=
e, B A =2]]
Proof: We consider the following cases for n:
Case 1. n = 0(mod 3). We divide P, X] B, into g blocks each of which consists of six vertices. We denote these
blocks by B;: 1 < j < 7 so that:
B; ={(1,3j —2),(1,3j — 1),(1,3)),(2,3j — 2),(2,3j — 1), (2,3))}

Let f:V — {0,1,2} be an arbitrary PIDF conducted on P, X P,. Forany B;:1 < j < g We notice that:

If £(1,3j — 1) = 0 then f(B;) = 2. Otherwise, (1,3j — 1) is imperfect. The same argument can be applied if

f(23j—1)=0.
If £(1,3j — 1) + f(2,3j — 1) > 2 itis obvious that f(B;) > 2.

We conclude that f(B,-) >2forany1<j < g This means Y, ey f(v) = Zj:ff(Bj) >2 (g) = 2?" Therefore:

2n
LetM; ={(2,3j—1):1<j < g}, let f:V - {0,1,2}sothatfor1 <i<2;1<j<m
el Y = 2if (i,j) € My;
(V) {0 otherwise.

We notice that ' is a PIDF on (P, X B,) and w(f') = 0|V,| + 2[V,| =0 (53—“) +2 (2) = 2;” We conclude that
Y (P, K B) < %n Figure 8 illustrates that y” (P, X P;,) < 8. From (7) we obtain y” (P, X B,) = 2?" =2 E] if
n = 0(mod 3).

Figure 8.y} (P, X P;,) < 8.
DOIL: https://doi.org/10.54216/G]MSA.0110104
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Case 2. n = 1(mod 3). We divide the graph induced by {(i,j):1 < i< 2;3<j<n—2} into"T_4 blocks denoted
by B;:1 < j <™= s0 that:
B; = {(1,3)),(1,3j + 1), (1,3j + 2),(2,3)),(2,3j + 1),(2,3j + 2)}
The remining eight vertices of P, X B, form the two mini-blocks:
A ={(1,1),(1,2),(21),(22)}; 4, = {(1,n—1),(1,n),(2,n — 1), (2,n — 1)}. Now Ietf V - {0,1,2} be an

arbitrary PIDF conducted on P, X B,. We can directly conclude from Case 1 that Z}I 13 f(B) =2 ( ) which
means:

—4
(B RR) > 2(“) + £(A) + £(4) ®)
We notice that:

o Iff((1,1)) =f((2,1)) =0then f((1,2)) + f((2,2)) = 2. Otherwise, (1,1) and (2,1) are both imperfect.

o Iff((1,1)) =0and f((2,1)) = 1,then £((1,2)) + f((2,2)) = 1 orelse (1,1) is imperfect. The same applies
if f((1,1)) =1and f((2,1)) = 0.

o Iff((1,1)) + f((2,1)) = 2 then obviously f(4;) = 2.

We conclude that f(A,) = 2 and the same argument applies to A4,, i.e., f(4,) = 2. Therefore and from (8), we

obtain the lower bound y;” (P2|Z|P)>2( )+2+2—2("+2)—2H

LetM, ={(2,3j+1):0<j < nT_l}, we define the following PIDF f":V — {0,1,2} sothatfor1 < i <2;1<j <
n:

£y =27 0D &M

0 otherwise.

w(f)_0< ( 34>+3+3)+2<<n3j>+1+1>:2(%):2[%].

Therefore, yf (P, X P,) < 2 E] Figure 9 shows that y (P, XI P,) < 8. By comparing the lower and the upper
bounds we prove that ¥/ (P, X B,) = 2 E] if n = 1(mod 3).

Figure 9. y/ (P, X P;o) < 8.

Case 3. n = 2(mod 3). We divide the graph induced by {(i,j): 1 < i< 2;1<j<n—2} intonT_2 blocks denoted
by B:1<j< "T_Zso that:
the remaining four vertices of P, X B, form the mini-block 4, = {(1,n — 1), (1,n),
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i_n-2 :
(2,n—1),(2,n)}. From Case 1 we immediately conclude that Zj.:f f(B) = 2(”72), we also found in Case 2
that £(A,) > 2. Therefore y? (P, X P,) > 2 ("7‘2) +2=2 ("T“) =2 E] Let My = {(2,3j —1):11 <j <™},
We define the following PIDF (denoted f") sothatfor 1 <i <2;1<j<m:
Ve 2if (i,j) € Mg;
J(ON)) :{ if (i,j) € M3

0 otherwise.

i =0(e (521325 1) 23

This means y? (P, X P,) < 2 [g] and thus ¥/ (P, X P,) = 2 E] if n = 2(mod 3). From all cases we prove the
requested. m
Theorem 5. For n > 2, let P; X B, be a strong grid graph;
» n
V(s KB =2]3]
Proof:
Case n = 0(mod 3). The blocks Bj: 1 < j < gare defined as B; = {(1,3j — 2),
(1,3/ — 1), (1,3)), (2,3 — 2), (2,3 — 1),(2,3/), (3,3j — 2),(3,3j — 1), (3,3/)}. For every B; we notice that:
o Iff((23j—1)) = 0then f(B;) = 2 or else (2,3j — 1) is imperfect.
o If F(@23j-1)=1 and f((1,3j—1))=0 then fF((1,3/—2))+f((13))+r((23j—-2))+
£((2,3/)) = 1orelse (1,3j — 1) is imperfect.
o If F(@23j-1)=1 and f((33i—1)=0 then f((33—2))+f((33))+r(B3—-2)+
£((3,3/)) = 1orelse (3,3j — 1) is imperfect.
o Iff((23j—1)=2thenf(B;)>2.

Therefore, f(B,-) >2forany1<j < g The rest of this proof is very similar to the proof of Theorem 4. We will

only mention the main sets and functions for each case taking into consideration that the proof is exactly the same
as Theorem 4:

Case n = 0(mod 3):
o M ={(3-1):1<j<3}.
e PIDF: f:V ->{0,1,2}sothatfor1 <i<2;1<j<n:
P =G nermise. "
o wi=2[3
o WP RP)=2[4
Case n = 1(mod 3):
e Forl<sjc< nT_A’:
B; = {(1,3)),(1,3j + 1),(1,3j + 2),(2,3)), (2.3j + 1), (2,3j + 2),(3,3)),
(3,3j + 1), (3,3 + 2)}.
o A ={(1,1),(1,2),(21),(22),(3,1),(3.2)}
o A, ={1,n-1),(1,n),(2,n—-1),(2,n),3,n—1),(3,n)}
o Iff((2,1)) = 0then f(4,) = 2.
If£((21) =1and £((1,1)) = 0 then £((1,2)) + £((2,2)) = 1.
If£((21) =1and £((3,1)) = 0 then £((2,2)) + f((3,2)) = 1.
If £((2,1)) = 2 then f(4,) = 2.
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We conclude thatf(A ) = 2 and similarly, f(4,) = 2.

e VWP RP)=Y ;:13 f(B)+f(A1)+f(A)>2( )+2+2—2H.
o My={@23+1:0<j<2h
e PIDF: f:V > {0,1,2}sothatfor1 <i<2;1<j<n:

v o (20f (i) € My;
fr@n) = {0 otherwise.
. wu=2[
« KPR =2[}
Case n = 2(mod 3):
e Forl<sjc< nT_z:
B; ={(1,3/—2),(1,3j — 1),(1,3),(23j — 2),(2,3j = 1),(2,3/),3,3j — 2),
(33— 1,330}
o For1is<j<™2f(B) =2
e A, ={(1,n-1),(1,n),2n-1),2n),Gn-1),3n).
e f(4) =2
e Y, ®P)=Y (B)+f(A)>2( )+2_2H
o M;={(23j - 1) 1<1<”—“}
e PIDF: f": V—>{012}sothatfor1 <i<2;1<j<n

PP = i,
o win=2[
. WPRP)=2[Y
From all the cases we conclude that y/ (P; X P,) = 2 E] forn=2.m

Theorem 6. For m,n = 2, let B,, XI B, be a strong grid graph. We define k; = 3 — (nmod 3), k, =3 —

(m mod 3), then y[p(Pm X Pn) < 2mn+2k1m-;2kzn+2k1kz_

Proof: To establish this upper bound, it is enough to conduct f’:V — {0,1,2}, a PIDF of weight
zmn“kimszn“klkz on P, XI P, for all the cases of m,n.For1 <i<m, 1<j<nlet f'be:

Ve 2if (i,j) € M;

frG ) = 24 &)

0 otherwise.

Now we give M, w(f") for all cases of m, n:
Case 1. m,n = 0(mod 3).
2mn

{2 12y i< <t n _ 2mn
_{(31 1,3 1).15133,13133}, w(f') =22
Case 2. m = 1(mod 3) and n = 0(mod 3).

={Bi+13-D0<i <1< <D, w) =T
Case 3. m = 2(mod 3) and n = 0(mod 3).
={@i-13-Di1<i<™h1<j <, w() =2
Case 4. m = 0(mod 3) and n = 1(mod 3).
2mn+4m

={Gi-13j+1:1<i<T0< <= wi) =
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Case 5. m,n = 1(mod 3).

M={@Ei+13+1):0<i <™ 0<) < w(pr) = mnms
Case 6. m = 2(mod 3) and n = 1(mod 3).
M={GEi-13+1):1<i<™50<) <, w(f) =2t
Case 7. m = 0(mod 3) and n = 2(mod 3).
M={@E,3-1:1<i<D1<) <M w) =2

Case 8. m = 1(mod 3) and n = 2(mod 3).
M={(3i+1,3j+1):OSiSmT_1;1SanTH}, w(f') = Zamnts
Case 9. m,n = 2(mod 3).
M={Ei-13j-1:1<i <™ 1<) <2 w(p) = T

From all these cases we conclude that v/ (P, Xl P,) < Zmn”klmf}z"z"”klkz for m,n > 2 and with k, = 3 —
(nmod 3), k, =3 — (mmod 3).1
2.4. The perfect Italian domination number of Jahangir graph J ,.

In this section, we determine the perfect Italian domination number of Jahangir graph J;,, for any s >
2and m = 3.

Theorem 7. Fors = 2 and m = 3, let J¢,,, be Jahangir graph:

ms
—+ 1 if sis even;
) _ )2
yI (]s,m) - m(s — 1)

> +1 if sis odd.

Proof:

We implied earlier that the set of 3-degree vertices of Cy,, i.€., {v;,;:: 1 < i <m — 1} is denoted by R. We notice
that the vertices of R divide J; ,,, into m subgraphs (each of which consists of s + 2 vertices). For1 <i <m —1
we denote these subgraphs by:

04; = {U1+(i—1)s, V2+(i-1)ss = Vis v1+isrvsm+1}

taking into consideration that O0A. = {Vi4m-1)s: V2+(m-1)ss > Vsms V1, Vsms1}- Figure 10 illustrates
0A;,04,,0A5 0N ], 3.

Figure 10. 0A;,0A;,0A3 0N J, 3.
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We also notice that the vertices of R divide C,, into m paths of length s — 1. We denote them by PS(_i)l: 1<i<m
where Ps(fi = {Va4(k-1)ss - Vks}- We consider the following cases for s:

Case 1. s is even. Let us discuss the perfect Italian domination of two consecutive subgraphs 0A;, 0A;,,. Let
f:V - {0,1,2} be an arbitrary PIDF conducted on J; ,,,, we notice the following observations:

o |If f(V2+(i—1)s) = f(V4+(i—1)s) == f(vi5_2) = f(vs) =0 and f(V3+(i—1)s) = f(V5+(i—1)s) ==
f(Wis—3) = f(v;is_1) =1  then by Proposition 2; f(PS(_i)g) = [%] = 2— 1. However, this means
f(V1+(i_1)s) = f(V14is) = 1 orelse v, (;_1)s, V45 is imperfect (respectively). The same argument applies to
Ps(il). We will call this configuration 1.

o |If f(V2+(i—1)s) = f(V4+(i—1)s) == f(vi5_2) = f(vs) =0 and f(V3+(i—1)s) = f(V5+(i—1)s) ==
f(vis—s) = f(vis_1) = 1 then by Proposition 2; f(P\”)) = E] = % Therefore f(vy1-1ys) + f(W14i5) = 0.
The same argument applies to RS(_"J{”. We will call this configuration 2.

e If configuration 1 is applied, f(vsm41) =1 Or else f(vgmyr) =0 and  Xyenen, ) f (W) > 2 which is a
contradiction.

e If configuration 2 is applied and f(v1+(i—1)s) + f(v14:5) < 2 then at least one of them is of weight zero which

means f(vsn41) = 0, therefore two vertices of R must be of collective weight two and the rest must be of
collective weight zero.

It is obvious that using vertices of weight two does not change these observations, without loss of generality, we
conclude that:

If configuration 1 is applied on the entire graph, then the corresponding PIDF is:

sm
1ifi=2k+1when0£k£7;
f'v) =

sm
0ifi=2kwhen1§k£7.

which is of weight w(f") = 0 (?) +1 (% + 1) =%+ 1. Therefore, v/ (Jom) < -+ 1.

If configuration 2 is applied on the entire graph, then the corresponding PIDF is:

sm
Oifi=2k+1when1$k£7andi¢1+s;
f”(vi)= sm
1ifi=2kwhen1SkSTOriE{1,1+S}.

which is of weight w(f") =0 (% - 1) +1 (% + 2) ="+ 2and ¥ (Jom) < 5-+2. We notice that
configuration 1 is more optimal, thus ¥7 (Jom) = % + 1ifs >2,m > 3and s is even.

Case 2. s is odd. Let f:V — {0,1,2} be an arbitrary PIDF conducted on J,. It is obvious that if f(vs;,.1) = 0,
then the f(R) = 2. This means at least m — 2 vertices of R are of weight zero. When studying f on a subgraph
0A;we notice the following:

It f(Vorgonys) = F(Varons) = = = FWism3) = fWis=1) = 0 and  f(v34-1)s) = f(Vsig-ns) = = =
f(wis—2) = f(v;s) = 1 then by Proposition 2; f(Ps(_i)l) < E] = 2 However, this means f(v1+(i_1)s) =1 orelse
Var-1)s IS imperfect. In a similar way, if f(vo1i-1)s) = f(Var-nys) = = f(Wis—3) = f(vis—1) = 1 and
f(Var-1s) = f(Wsa-1s) = = = f(Wis—2) = f(vis) = 0 then f(vy4y5) =1 or else vy is imperfect. We
conclude that, for 1 <i < m in order to assign the vertices of Ps(_")1 the minimal weighted possible assignment
which is 010101..01, then:

e All vertices of R must be of weight 1. Otherwise, if an arbitrary vertex v, ;s € R is of weight zero, then either
Vs, Vis42 1S OF weight zero and adjacent to two vertices of a collective weight (one), which is a contradiction.
o If f(Vgne1) = 0 then v, 4 is imperfect because Yy en (v, ,) f (W) = m.
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s+1

We conclude that y?(Jom) = mf(PL) + F(R) + f(Vgmser) =m (%) +m+1=m (T
S+1

establish the upper bound by conducting a PIDF of collective weight m (T) +1onj, First,for1<i<m

)+1. Now we

we divide each path PS(_”1 into two sets EP; and OP; defined as:
s—1 s—1
EPl- = {v21+(i—1)5: 1<Il< T}, OPL = {v21—1+(i—1)s: 2<1< T},

We also define:

i=m i=m
EP = UEPL-; OP = UOPL
i=1 i=1

We define the following PIDF (denoted f') on J,, so thatfor 1 <i < sm + 1:

1if v; € {OPUR U {vem 1}};

fieo = {0 v; € EP.

s+1

"~ _ _sm _ s+1
w(f)=|0P|+|RI+1=—"+m+1= m(T) + 1, therefore v (Js.m) < m(T

¥ (Usa) < 13.

) + 1. Figure 11 shows that

Figure 11. ¥¥(J54) < 13.

3. Conclusions

In this paper, we studied the perfect Italian domination problem on some graph classes. We determined the perfect
Italian domination number of the circulant graph C,,{1,2} for n > 5 and introduced an upper bound for the perfect
Italian domination number C,{1,3} when n > 7. We also found this parameter for generalized Petersen graph
P(n,2) when n > 5. We determined y/ (P, X P,) and y/' (P; X B,) for arbitrary n > 2, then we introduced an
upper bound for y? (P,, X P,) whenm,n > 2 are arbitraries. Finally, we determined the perfect Italian domination
number of Jahangir graph J; ,,, for arbitrary s > 2 and m > 3.
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