Volume 10 , Issue 1 , PP: 26-30, 2023 | Cite this article as | XML | Html | PDF | Full Length Article
Lee Xu 1 *
Doi: https://doi.org/10.54216/GJMSA.0100103
This paper is dedicated to defining and studying the concept of congruencies in l-groups, where we prove the following main results:
1) If θ is a congruence relation on l-group G, then is l-group.
2) If is l-group, then for holds:
if and only if are equivalent.
Also, we illustrate many examples to clarify the validity of our work.
Group , l-Congruence , order relation , Lattice-ordered group.
[1] Dedekind, R., (1897). Ojber Zerlegungen Von Zahlen durclihre gr 68sten gemein schaftlichen Teiler, Ges. Werke, Bd 2, XXVIII6.
[2] Levi, F; (1913). Arithmetische Gesetze in Gebiete diskerter Gruppen, Rend, Palermo, 35, pp.225-236.
[3] Birkhoff, G., (1942), lattice-ordered groups, Annals of Mathematics.
[4] Birkhoff, G., (1937), Rings of sets, Duke Mathematical Journal, pp.443-454.
[5] Jakubik, J., (2001), On the Congruence Lattice of an Abelian Lahice ordered Group. Mathematica Bohemica.
[6] Ploscica, M; (2021). Congruence Lattices of Abelian l-Groups, Vol 33, pp.1651-1658.
[7] Waaijers, L; (1968), on the structure of lttice ordered Groups. Doctoral thesis, Waltman-Delft, Holland.
[8] Gerberding, J; (2020), Groups of Divisibility, Honors thesis, South Dakota, pp.15-17.
[9] Gratzer, G; (2011), Lttice theory Foundation, Springer Science and business Media, p 30.
[10] Gratzer, G; (2006), the Congruence of a finite lattice, Boston, pp. 14-16.