Volume 5 , Issue 2 , PP: 08-11, 2023 | Cite this article as | XML | Html | PDF | Full Length Article
Karla Zayood 1 *
Doi: https://doi.org/10.54216/GJMSA.050201
In this paper we give an equivalent definition of continuous and compact linear operators by using orthogonal bases in non-archimedean locally K - convex spaces. We also show that if E is a space and F is a semi-Montel space, then every continuous linear operator T:E→F is compact.
Operator , Convex space , Compact set
[1] N.De Grande-De Kimpe, On the structure of locally K-convex spaces with a Schauder basis, Indag. Math., 34 (1972), 396-406.
[2] N.De Grande-De Kimpe, C-compactness in locally K-convex spaces, Indag. Math., 33, (1971), 176-180.
[3] C. C. Perez-Garcia and W.H. Schikhof, Compact operators and the Orlicz-Pettis property in p-adic analysis, Report 9101, Department of Math, Catholic University, Nijmegen, the Netherlands, 1991, 1 27.
[4] C. Perez-Garcia, On compactoidity in non-Archimedean locally convex spaces with a Schauder basis, Nederl. Akad. Wetensch. Indag., 50,(1988), 85-88.
[5] W.H. Schikhof, Locally convex spaces over non-spherically complete valued fields, I-II, Bull. Soc. Math. Belgique, XXXVIII (ser. B),38, (1986), 187-224.
[6] A. C. M. Van Rooij, Non-Archimedean Functional Analysis, Marcel Dekker, New York, (1978).
[7] V.P. Zahariuta, On the isomorphism of Cartesian products of locally convex spaces, Studia Math. 46, (1973), 201-221.
[8] Multu, F., Tercan, A., and Yasar, R., Eventually semisimple weak FI-extending modules, Mathematica BOHEMICA, Vol 148, 2023
[9] Yasar, R., C11-modules via left exact modules preradicals, Turkish journal of mathematics, vol 45, 2021.
[10] Yasar, R., On weak Projection invariant semisimple modules, Fundamental journal of mathematics and applications, 2021.
[11] Yasar, R., and Tercan, A., Extending property on EC-fully submodules, Sakarya university Journal of Science, 2018.