Journal of International Economics Research

Journal DOI

https://doi.org/10.54216/JIER

Submit Your Paper

PendingISSN (Online)

Volume 1 , Issue 1 , PP: 10-25, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

Zomin, Uzbekistan: A Spatial–Ecological Sustainability Index

Botirjon Karimov 1 * , Ziyodulla Khakimov 2 , Shirin Karimova 3

  • 1 University of Tasmania, Hobart, Australia - (botirjon.karimov@utas.edu.au)
  • 2 Alfraganus University, Tashkent, Uzbekistan - (z.xakimov@afu.uz)
  • 3 Tashkent State University of Economics, Tashkent, Uzbekistan - (karimovashirin22@gmail.com)
  • Doi: https://doi.org/10.54216/JIER.010102

    Received: December 14, 2025 Revised: January 23, 2025 Accepted: February 25, 2025
    Abstract

    Arid and semi-arid regions are facing faster land degradation and growing water stress. Planners need indicators that connect conservation goals to everyday decisions. In Uzbekistan’s Zomin region, few long-term, spatial studies combine vegetation condition with water-conservation capacity. We develop a transparent Spatial–Ecological Sustainability Index (SESI) to describe ecological quality and water support and to guide restoration and protection. The method merges several remote sensing and GIS layers: multi-decade NDVI from Landsat and Sentinel, terrain measures such as slope and flow accumulation, and land-cover permeability. We normalize these layers and combine them with a tested weighting method, producing SESI maps and summaries for districts and protected areas. The results show clear patterns by elevation and land use: upper catchments have strong water-retention potential, while valley bottoms near settlements show mixed conditions. The approach is reproducible, decision-ready, and adaptable to other mountainous, water-limited regions.

    Keywords :

    Zomin , NDVI , GIS , Spatial data fusion , Remote sensing , Desertification , Ecotourism , YOLOv11

    References

    [1]       J. C. S. Rosa, A. Morrison‐Saunders, M. Hughes, and L. E. Sánchez, “Planning mine restoration through ecosystem services to enhance community engagement and deliver social benefits,” Restoration Ecology, vol. 28, no. 4, pp. 937–946, Jul. 2020, doi: 10.1111/rec.13162.

     

    [2]       K. Lei, H. Pan, and C. Lin, “A landscape approach towards ecological restoration and sustainable development of mining areas,” Ecological Engineering, vol. 90, pp. 320–325, May 2016, doi: 10.1016/j.ecoleng.2016.01.080.

     

    [3]       C. Cheng, F. Zhang, J. Shi, and H.-T. Kung, “What is the relationship between land use and surface water quality? A review and prospects from remote sensing perspective,” Environmental Science and Pollution Research, vol. 29, no. 38, pp. 56887–56907, Aug. 2022, doi: 10.1007/s11356-022-21348-x.

     

    [4]       Z. Lian, H. Hao, J. Zhao, K. Cao, H. Wang, and Z. He, “Evaluation of Remote Sensing Ecological Index Based on Soil and Water Conservation on the Effectiveness of Management of Abandoned Mine Landscaping Transformation,” International Journal of Environmental Research and Public Health, vol. 19, no. 15, p. 9750, Aug. 2022, doi: 10.3390/ijerph19159750.

     

    [5]       R. Kulmatov, J. Mirzaev, A. Taylakov, J. Abuduwaili, and B. Karimov, “Quantitative and qualitative assessment of collector-drainage waters in Aral Sea Basin: trends in Jizzakh region, Republic of Uzbekistan,” Environmental Earth Sciences, vol. 80, no. 3, p. 122, Feb. 2021, doi: 10.1007/s12665-021-09406-y.

     

    [6]       R. Almalki, M. Khaki, P. M. Saco, and J. F. Rodriguez, “Monitoring and Mapping Vegetation Cover Changes in Arid and Semi-Arid Areas Using Remote Sensing Technology: A Review,” Remote Sensing, vol. 14, no. 20, p. 5143, Oct. 2022, doi: 10.3390/rs14205143.

     

    [7]       M. M. Abdullah et al., “UAVs for improving seasonal vegetation assessment in arid environments,” Frontiers in Environmental Science, vol. 12, p. 1366712, Apr. 2024, doi: 10.3389/fenvs.2024.1366712.

     

    [8]       C. Aguilar, J. C. Zinnert, M. J. Polo, and D. R. Young, “NDVI as an indicator for changes in water availability to woody vegetation,” Ecological Indicators, vol. 23, pp. 290–300, Dec. 2012, doi: 10.1016/j.ecolind.2012.04.008.

     

    [9]       Q.-Q. Xia, Y.-N. Chen, X.-Q. Zhang, and J.-L. Ding, “Spatiotemporal Changes in Ecological Quality and Its Associated Driving Factors in Central Asia,” Remote Sensing, vol. 14, no. 14, p. 3500, Jul. 2022, doi: 10.3390/rs14143500.

     

    A.         K. Gupta, S. R. Singh, and P. K. Sharma, “Advancements in Remote Sensing Techniques for Environmental Monitoring: A Review,” Remote Sensing Applications: Society and Environment, vol. 25, p. 100650, 2022, doi: 10.1016/j.rsase.2022.100650.

     

    [10]    Y. Zha, J. Gao, and S. Ni, “Use of normalized difference built-up index in automatically mapping urban areas from TM imagery,” International Journal of Remote Sensing, vol. 24, no. 3, pp. 583–594, Jan. 2003, doi: 10.1080/01431160304987.

     

    [11]    “EarthExplorer.” Accessed: Sept. 27, 2025. [Online]. Available: https://earthexplorer.usgs.gov/

     

    [12]    Ultralytics, “Home.” Accessed: Sept. 27, 2025. [Online]. Available: https://docs.ultralytics.com/

     

    [13]    R. Khan and H. Gilani, “Global drought monitoring with big geospatial datasets using Google Earth Engine,” Environmental Science and Pollution Research, vol. 28, no. 14, pp. 17244–17264, Apr. 2021, doi: 10.1007/s11356-020-12023-0.

     

    [14]    PhD student, Uzbekistan State University of World Languages, Uzbekistan, and O. Nematov, “Tourism centers in Jizzakh region,” TAJSSEI, vol. 6, no. 9, pp. 186–191, Sept. 2024, doi: 10.37547/tajssei/Volume06Issue09-20.

     

    [15]    J. Terven, D.-M. Córdova-Esparza, and J.-A. Romero-González, “A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS,” Machine Learning and Knowledge Extraction, vol. 5, no. 4, pp. 1680–1716, Nov. 2023, doi: 10.3390/make5040083.

     

    [16]    Y. Maniatis, A. Doganis, and M. Chatzigeorgiadis, “Fire Risk Probability Mapping Using Machine Learning Tools and Multi-Criteria Decision Analysis in the GIS Environment: A Case Study in the National Park Forest Dadia-Lefkimi-Soufli, Greece,” Applied Sciences, vol. 12, no. 6, p. 2938, Mar. 2022, doi: 10.3390/app12062938.

     

    [17]    E. Harvey, M. Petrov, and M. C. Hughes, “Learning the Regularization Strength for Deep Fine-Tuning via a Data-Emphasized Variational Objective,” arXiv, 2024, doi: 10.48550/ARXIV.2410.19675.

     

    [18]    “Soil Erosion Threat Increasing with Climate Change.” Accessed: Sept. 27, 2025. [Online]. Available: https://extension.psu.edu/soil-erosion-threat-increasing-with-climate-change

     

    [19]    E. Karimov and S. S. Anorboyev, “Geographical aspects of ecotourism opportunities of Zamin State Reserve and National Park,” Journal of Geography and Natural Resources, vol. 3, no. 05, pp. 68–74, Sept. 2023, doi: 10.37547/supsci-jgnr-03-05-10.

     

    [20]    S. K. Dhar and S. J. Hoch, “Why Store Brand Penetration Varies by Retailer,” Marketing Science, vol. 16, no. 3, pp. 208–227, Aug. 1997, doi: 10.1287/mksc.16.3.208.

     

    [21]    Ruziev, L. Samiev, D. Mustafoyeva, S. Nortaev, and S. Yakhshiev, “Geographic Information System for changing the level of soil salinity in Jizzakh province, Uzbekistan,” E3S Web of Conferences, vol. 371, p. 01013, 2023, doi: 10.1051/e3sconf/202337101013.

     

    [22]    “ARSET – Creating and Using Normalized Difference Vegetation Index (NDVI) from Satellite Imagery  NASA Applied Sciences.” Accessed: Sept. 27, 2025. [Online]. Available: https://appliedsciences.nasa.gov/get-involved/training/english/arset-creating-and-using-normalized-difference-vegetation-index-ndvi

    Cite This Article As :
    Karimov, Botirjon. , Khakimov, Ziyodulla. , Karimova, Shirin. Zomin, Uzbekistan: A Spatial–Ecological Sustainability Index. Journal of International Economics Research, vol. , no. , 2025, pp. 10-25. DOI: https://doi.org/10.54216/JIER.010102
    Karimov, B. Khakimov, Z. Karimova, S. (2025). Zomin, Uzbekistan: A Spatial–Ecological Sustainability Index. Journal of International Economics Research, (), 10-25. DOI: https://doi.org/10.54216/JIER.010102
    Karimov, Botirjon. Khakimov, Ziyodulla. Karimova, Shirin. Zomin, Uzbekistan: A Spatial–Ecological Sustainability Index. Journal of International Economics Research , no. (2025): 10-25. DOI: https://doi.org/10.54216/JIER.010102
    Karimov, B. , Khakimov, Z. , Karimova, S. (2025) . Zomin, Uzbekistan: A Spatial–Ecological Sustainability Index. Journal of International Economics Research , () , 10-25 . DOI: https://doi.org/10.54216/JIER.010102
    Karimov B. , Khakimov Z. , Karimova S. [2025]. Zomin, Uzbekistan: A Spatial–Ecological Sustainability Index. Journal of International Economics Research. (): 10-25. DOI: https://doi.org/10.54216/JIER.010102
    Karimov, B. Khakimov, Z. Karimova, S. "Zomin, Uzbekistan: A Spatial–Ecological Sustainability Index," Journal of International Economics Research, vol. , no. , pp. 10-25, 2025. DOI: https://doi.org/10.54216/JIER.010102