Volume 3 , Issue 1 , PP: 27-33, 2024 | Cite this article as | XML | Html | PDF | Full Length Article
Ahmad Khaldi 1 *
Doi: https://doi.org/10.54216/NIF.030104
In this paper, we study the problem of estimating variance components in the two-way classification with interaction in the random effect linear model by non-linear maximization. We assume the model according to the assumptions and give the theory of derivation of the estimators of these components, then apply these estimators on real data and obtain the estimates. We estimate these components by two other methods: the solution of the expected equation of mean square in the analysis of the variance table, and the minimum variance quadratic unbiased estimator.
Variance , Linear model , Non-linear maximization , Estimation theory
[1] Cressie, N. (1993), Statistics for Spatial Data, Wiley, New York.
[2] Dietrich, C. R. and Osborne, M. R. (1991), Estimation of Covariance Parameter in Cringing Vai Restricted Maximum Likelihood, J. Math. Geo. Vol. 23. No. 1. PP. 119-135.
[3] Mardia, Kent .J.T. and Bibby, J.A. (1979), Multivariate Analysis, Academic press, London.
[4] Marshall, R. J.and Mardia, K.V.(1985) , Minimum Norm Quadratic Estimation of Components of spatial Covariance Math. Geol. Vol. 17, No. 5,p.517-525
[5] Mardia, K. V. and Marshall, R. J. (1984), Maximum likelihood Estimation of Models for Residual Covariance In Spatial Regression Biometrika, 73, 135-146.
[6] Rao, C. R. and kleffe, J. (1988) : Estimation of variance component and application north Holland, Amsterdam
[7] Searle, S. R. (1988). Lecture notes on Variance Component. Biometrics unit, Cornell University, Ithaca, New York.
[8] Searle, S. R. Casella, G. and Mc culloch, C. E. (1992): Variance Component. Wiley, New York.
[9] ASHISH, DAS, Himadri Ghosn (2003): Estimation of Ratio of Variance Component and Optimal Dialed Cross Designs. http: // www.isid.ac.in / ~ statmath / eprints Indian statistical institute, Delhi centre 7.