Volume 1 , Issue 2 , PP: 44-68, 2023 | Cite this article as | XML | Html | PDF | Full Length Article
Mahmoud Ibrahim 1 *
Doi: https://doi.org/10.54216/NIF.010205
The development of Online media sites in recent years has led to the spread of content sharing like commercial advertisements, political news, celebrity news, and so on. Various social media applications, such as Facebook, Instagram, and Twitter, have been impacted by fake news. Due to the easier access and rapid expansion of data through online media platforms, distinguishing between fake and real data has become difficult. The massive volume of news transmitted over online media portals makes manual verification impractical, which has prompted the development and deployment of automated methods for detecting fake news. Given the clear dangers of misleading and deception, fake news study has seen an increase in efforts that employ machine learning approaches, and sentiment analysis. In this study, we review the many implementations of sentiment analysis and machine learning methodologies in the fake news detection, as well as the most pressing difficulties and future research prospects.
Fake News , Sentiment Analysis , Social Media , Fusion Technique
[1] M. Guerini and J. Staiano, “Deep feelings: A massive cross-lingual study on the relation between emotions and virality,” 2015, doi: 10.1145/2740908.2743058.
[2] J. P. Dickerson, V. Kagan, and V. S. Subrahmanian, “Using sentiment to detect bots on Twitter: Are humans more opinionated than bots?,” 2014, doi: 10.1109/ASONAM.2014.6921650.
[3] Y. Chen, N. J. Conroy, and V. L. Rubin, “Misleading online content: Recognizing clickbait as ‘false news,’” 2015, doi: 10.1145/2823465.2823467.
[4] B. Horne and S. Adali, “This just in: Fake news packs a lot in title, uses simpler, repetitive content in text body, more similar to satire than real news,” in Proceedings of the International AAAI Conference on Web and Social Media, Mar. 2017, vol. 11, no. 1.
[5] R. Oshikawa, J. Qian, and W. Y. Wang, “A survey on natural language processing for fake news detection,” 2020.
[6] N. J. Conroy, V. L. Rubin, and Y. Chen, “Automatic deception detection: Methods for finding fake news,” Proc. Assoc. Inf. Sci. Technol., 2015, doi: 10.1002/pra2.2015.145052010082.
[7] M. K. Elhadad, K. Fun Li, and F. Gebali, “Fake News Detection on Social Media: A Systematic Survey,” 2019, doi: 10.1109/PACRIM47961.2019.8985062.
[8] R. K. Kaliyar, A. Goswami, and P. Narang, “FakeBERT: Fake news detection in social media with a BERT-based deep learning approach,” Multimed. Tools Appl., 2021, doi: 10.1007/s11042-020-10183-2.
[9] K. Shu, A. Sliva, S. Wang, J. Tang, and H. Liu, “Fake News Detection on Social Media,” ACM SIGKDD Explor. Newsl., 2017, doi: 10.1145/3137597.3137600.
[10] A. Bondielli and F. Marcelloni, “A survey on fake news and rumour detection techniques,” Inf. Sci. (Ny)., 2019, doi: 10.1016/j.ins.2019.05.035.
[11] K. Sharma, F. Qian, H. Jiang, N. Ruchansky, M. Zhang, and Y. Liu, “Combating fake news: A survey on identification and mitigation techniques,” ACM Transactions on Intelligent Systems and Technology. 2019, doi: 10.1145/3305260.
[12] F. C. D. da Silva, R. V. da Costa Alves, and A. C. B. Garcia, “Can machines learn to detect fake news? A survey focused on social media,” 2019, doi: 10.24251/hicss.2019.332.
[13] A. Zubiaga, A. Aker, K. Bontcheva, M. Liakata, and R. Procter, “Detection and resolution of rumours in social media: A survey,” ACM Computing Surveys. 2018, doi: 10.1145/3161603.
[14] S. Sharma and D. K. Sharma, “Fake News Detection: A long way to go,” 2019, doi: 10.1109/ISCON47742.2019.9036221.
[15] A. E. Lillie and E. R. Middelboe, “Fake news detection using stance classification: A survey,” arXiv Prepr. arXiv1907.00181, Dec. 2019.
[16] X. Zhang and A. A. Ghorbani, “An overview of online fake news: Characterization, detection, and discussion,” Inf. Process. Manag., 2020, doi: 10.1016/j.ipm.2019.03.004.
[17] P. Meel and D. K. Vishwakarma, “Fake news, rumor, information pollution in social media and web: A contemporary survey of state-of-the-arts, challenges and opportunities,” Expert Systems with Applications. 2020, doi: 10.1016/j.eswa.2019.112986.
[18] X. Zhou and R. Zafarani, “A Survey of Fake News: Fundamental Theories, Detection Methods, and Opportunities,” ACM Comput. Surv., 2020, doi: 10.1145/3395046.
[19] D. Antonakaki, P. Fragopoulou, and S. Ioannidis, “A survey of Twitter research: Data model, graph structure, sentiment analysis and attacks,” Expert Syst. Appl., 2021, doi: 10.1016/j.eswa.2020.114006.
[20] Z. Guo, J. H. Cho, I. R. Chen, S. Sengupta, M. Hong, and T. Mitra, “Online Social Deception and Its Countermeasures: A Survey,” IEEE Access. 2021, doi: 10.1109/ACCESS.2020.3047337.
[21] F. D. C. Medeiros and R. B. Braga, “Fake news detection in social media: A systematic review,” 2020, doi: 10.1145/3411564.3411648.
[22] N. Hoy and T. Koulouri, “A Systematic Review on the Detection of Fake News Articles,” arXiv Prepr. arXiv2110.11240, Oct. 2021.
[23] E. Providel and M. Mendoza, “Misleading information in Spanish: a survey,” Social Network Analysis and Mining. 2021, doi: 10.1007/s13278-021-00746-y.
[24] N. R. de Oliveira, P. S. Pisa, M. A. Lopez, D. S. V. de Medeiros, and D. M. F. Mattos, “Identifying fake news on social networks based on natural language processing: Trends and challenges,” Information (Switzerland). 2021, doi: 10.3390/info12010038.
[25] D. Rohera et al., “A Taxonomy of Fake News Classification Techniques: Survey and Implementation Aspects,” IEEE Access, vol. 10, pp. 30367–30394, 2022.
[26] O. Stitini, S. Kaloun, and O. Bencharef, “Towards the Detection of Fake News on Social Networks Contributing to the Improvement of Trust and Transparency in Recommendation Systems: Trends and Challenges,” Information, vol. 13, no. 3, p. 128, 2022.
[27] A. Fang, C. Macdonald, I. Ounis, and P. Habel, “Using word embedding to evaluate the coherence of topics from twitter data,” 2016, doi: 10.1145/2911451.2914729.
[28] S. Sarawagi et al., “Thumbs up or thumbs down? Semantic Orientation applied to Unsupervised Classification of Reviews,” Expert Syst. Appl., 2014.
[29] D. Vilares, C. Gómez-Rodríguez, and M. A. Alonso, “Universal, unsupervised (rule-based), uncovered sentiment analysis,” Knowledge-Based Syst., 2017, doi: 10.1016/j.knosys.2016.11.014.
[30] E. Cambria, Y. Li, F. Z. Xing, S. Poria, and K. Kwok, “SenticNet 6: Ensemble Application of Symbolic and Subsymbolic AI for Sentiment Analysis,” 2020, doi: 10.1145/3340531.3412003.
[31] S. Hamidian and M. T. Diab, “Rumor identification and belief investigation on Twitter,” 2016, doi: 10.18653/v1/w16-0403.
[32] M. Meire, M. Ballings, and D. Van den Poel, “The added value of auxiliary data in sentiment analysis of Facebook posts,” Decis. Support Syst., 2016, doi: 10.1016/j.dss.2016.06.013.
[33] M. AbdelFattah, D. Galal, N. Hassan, D. S. Elzanfaly, and G. Tallent, “A sentiment analysis tool for determining the promotional success of fashion images on instagram,” Int. J. Interact. Mob. Technol., 2017, doi: 10.3991/ijim.v11i2.6563.
[34] X. Hu, J. Tang, H. Gao, and H. Liu, “Social Spammer Detection with Sentiment Information,” 2014, doi: 10.1109/ICDM.2014.141.
[35] M. A. Alonso and D. Vilares, “A review on political analysis and social media,” Procesamiento de Lenguaje Natural. 2016.
[36] J. S. Jang, B. I. Lee, C. H. Choi, J. H. Kim, D. M. Seo, and W. S. Cho, “Understanding pending issue of society and sentiment analysis using social media,” 2016, doi: 10.1109/ICUFN.2016.7536944.
[37] P. D. Azar and A. W. Lo, “The wisdom of twitter crowds: Predicting stock market reactions to FOMC meetings via twitter feeds,” Journal of Portfolio Management. 2016, doi: 10.3905/jpm.2016.42.5.123.
[38] S. Sharma and A. Jain, “Role of sentiment analysis in social media security and analytics,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2020, doi: 10.1002/widm.1366.
[39] A. H. Alamoodi et al., “Sentiment analysis and its applications in fighting COVID-19 and infectious diseases: A systematic review,” Expert Systems with Applications. 2021, doi: 10.1016/j.eswa.2020.114155.
[40] H. Allcott and M. Gentzkow, “Social media and fake news in the 2016 election,” Journal of Economic Perspectives. 2017, doi: 10.1257/jep.31.2.211.
[41] C. Silverman, “This analysis shows how viral fake election news stories outperformed real news on Facebook,” BuzzFeed news, vol. 16, 2016.
[42] C. Guo, J. Cao, X. Zhang, K. Shu, and H. Liu, “Dean: Learning dual emotion for fake news detection on social media,” arXiv e-prints, p. arXiv--1903, 2019.
[43] M. AlRubaian, M. Al-Qurishi, M. Al-Rakhami, S. M. M. Rahman, and A. Alamri, “A multistage credibility analysis model for microblogs,” 2015, doi: 10.1145/2808797.2810065.
[44] A. Dey, R. Z. Rafi, S. Hasan Parash, S. K. Arko, and A. Chakrabarty, “Fake news pattern recognition using linguistic analysis,” 2019, doi: 10.1109/ICIEV.2018.8641018.
[45] B. Bhutani, N. Rastogi, P. Sehgal, and A. Purwar, “Fake News Detection Using Sentiment Analysis,” 2019, doi: 10.1109/IC3.2019.8844880.
[46] X. Zhang, J. Cao, X. Li, Q. Sheng, L. Zhong, and K. Shu, “Mining dual emotion for fake news detection,” 2021, doi: 10.1145/3442381.3450004.
[47] X. Yu, Y. Chu, F. Jiang, Y. Guo, and D. Gong, “SVMs Classification Based Two-side Cross Domain Collaborative Filtering by inferring intrinsic user and item features,” Knowledge-Based Syst., 2018, doi: 10.1016/j.knosys.2017.11.010.
[48] V. Agarwal, H. P. Sultana, S. Malhotra, and A. Sarkar, “Analysis of Classifiers for Fake News Detection,” 2019, doi: 10.1016/j.procs.2020.01.035.
[49] H. Ahmed, I. Traore, and S. Saad, “Detecting opinion spams and fake news using text classification,” Secur. Priv., 2018, doi: 10.1002/spy2.9.
[50] A. B. Prasetijo, R. R. Isnanto, D. Eridani, Y. A. A. Soetrisno, M. Arfan, and A. Sofwan, “Hoax detection system on Indonesian news sites based on text classification using SVM and SGD,” 2017, doi: 10.1109/ICITACEE.2017.8257673.
[51] S. B. Deokate, “Fake News Detection using Support Vector Machine learning Algorithm,” Int. J. Res. Appl. Sci. Eng. Technol., 2019, doi: 10.22214/ijraset.2019.7067.
[52] Y. Yang et al., “Combating,” 2017 IEEE 15th Student Conf. Res. Dev., 2018.
[53] J. A. Nasir, O. S. Khan, and I. Varlamis, “Fake news detection: A hybrid CNN-RNN based deep learning approach,” Int. J. Inf. Manag. Data Insights, 2021, doi: 10.1016/j.jjimei.2020.100007.
[54] N. Deligiannis, T. Do Huu, D. M. Nguyen, and X. Luo, “Deep Learning for Geolocating Social Media Users and Detecting Fake News,” NATO Work., 2018.
[55] Z. Khanam, B. N. Alwasel, H. Sirafi, and M. Rashid, “Fake News Detection Using Machine Learning Approaches,” IOP Conf. Ser. Mater. Sci. Eng., 2021, doi: 10.1088/1757-899x/1099/1/012040.
[56] S. Hakak, M. Alazab, S. Khan, T. R. Gadekallu, P. K. R. Maddikunta, and W. Z. Khan, “An ensemble machine learning approach through effective feature extraction to classify fake news,” Futur. Gener. Comput. Syst., 2021, doi: 10.1016/j.future.2020.11.022.
[57] S. Kaur, P. Kumar, and P. Kumaraguru, “Automating fake news detection system using multi-level voting model,” Soft Comput., 2020, doi: 10.1007/s00500-019-04436-y.
[58] E. Tacchini, G. Ballarin, M. L. Della Vedova, S. Moret, and L. de Alfaro, “Some like it Hoax: Automated fake news detection in social networks,” 2017.
[59] J. M. G. Ogdol, B.-L. T. Samar, and C. Cataroja, “Binary Logistic Regression based Classifier for Fake News,” Anal. Standar Pelayanan Minimal Pada Instal. Rawat Jalan di RSUD Kota Semarang, 2018.
[60] N. S. Yuslee and N. A. S. Abdullah, “Fake News Detection using Naive Bayes,” 2021, doi: 10.1109/ICSET53708.2021.9612540.
[61] M. Casillo, F. Colace, B. B. Gupta, D. Santaniello, and C. Valentino, “Fake News Detection Using LDA Topic Modelling and K-Nearest Neighbor Classifier,” 2021, doi: 10.1007/978-3-030-91434-9_29.
[62] T. Mladenova and I. Valova, “Analysis of the KNN Classifier Distance Metrics for Bulgarian Fake News Detection,” 2021, doi: 10.1109/HORA52670.2021.9461333.
[63] Z. H. Zhou, “A brief introduction to weakly supervised learning,” National Science Review. 2018, doi: 10.1093/nsr/nwx106.
[64] Z. Kou, D. Yue Zhang, L. Shang, and D. Wang, “ExFaux: A Weakly Supervised Approach to Explainable Fauxtography Detection,” 2020, doi: 10.1109/BigData50022.2020.9378019.
[65] S. Helmstetter and H. Paulheim, “Weakly supervised learning for fake news detection on Twitter,” 2018, doi: 10.1109/ASONAM.2018.8508520.
[66] K. Shu et al., “Leveraging multi-source weak social supervision for early detection of fake news,” arXiv Prepr. arXiv2004.01732, 2020.
[67] S. Yang, K. Shu, S. Wang, R. Gu, F. Wu, and H. Liu, “Unsupervised fake news detection on social media: A generative approach,” 2019, doi: 10.1609/aaai.v33i01.33015644.
[68] D. Li, H. Guo, Z. Wang, and Z. Zheng, “Unsupervised Fake News Detection Based on Autoencoder,” IEEE Access, 2021, doi: 10.1109/ACCESS.2021.3058809.
[69] S. C. R. Gangireddy, P. Deepak, C. Long, and T. Chakraborty, “Unsupervised fake news detection: A graph-based approach,” 2020, doi: 10.1145/3372923.3404783.
[70] M. Orlov and M. Litvak, “Using behavior and text analysis to detect propagandists and misinformers on twitter,” 2019, doi: 10.1007/978-3-030-11680-4_8.
[71] W. S. Paka, R. Bansal, A. Kaushik, S. Sengupta, and T. Chakraborty, “Cross-SEAN: A cross-stitch semi-supervised neural attention model for COVID-19 fake news detection,” Appl. Soft Comput., 2021, doi: 10.1016/j.asoc.2021.107393.
[72] X. Dong, U. Victor, S. Chowdhury, and L. Qian, “Deep two-path semi-supervised learning for fake news detection,” arXiv Prepr. arXiv1906.05659, 2019.
[73] A. Benamira, B. Devillers, E. Lesot, A. K. Ray, M. Saadi, and F. D. Malliaros, “Semi-supervised learning and graph neural networks for fake news detection,” 2019, doi: 10.1145/3341161.3342958.
[74] X. Li, P. Lu, L. Hu, X. G. Wang, and L. Lu, “A novel self-learning semi-supervised deep learning network to detect fake news on social media,” Multimed. Tools Appl., 2021, doi: 10.1007/s11042-021-11065-x.
[75] M. C. de Souza, B. M. Nogueira, R. G. Rossi, R. M. Marcacini, B. N. dos Santos, and S. O. Rezende, “A network-based positive and unlabeled learning approach for fake news detection,” Mach. Learn., 2021, doi: 10.1007/s10994-021-06111-6.
[76] Z. Li, X. Jiang, L. Shang, and H. Li, “Paraphrase generation with deep reinforcement learning,” 2018, doi: 10.18653/v1/d18-1421.
[77] W. Fedus, I. Goodfellow, and A. M. Dai, “MaskGaN: Better text generation via filling in the,” 2018.
[78] L. Cheng, A. Mosallanezhad, Y. N. Silva, D. L. Hall, and H. Liu, “Mitigating bias in session-based cyberbullying detection: A non-compromising approach,” 2021, doi: 10.18653/v1/2021.acl-long.168.
[79] A. Mosallanezhad, M. Karami, K. Shu, M. V Mancenido, and H. Liu, “Domain Adaptive Fake News Detection via Reinforcement Learning,” in Proceedings of the ACM Web Conference 2022, 2022, pp. 3632–3640.
[80] E. Meirom, H. Maron, S. Mannor, and G. Chechik, “Controlling graph dynamics with reinforcement learning and graph neural networks,” in International Conference on Machine Learning, 2021, pp. 7565–7577.
[81] T. Mitra and E. Gilbert, “CREDBANK: A large-scale social media corpus with associated credibility annotations,” 2015.
[82] A. Zubiaga, M. Liakata, R. Procter, K. Bontcheva, and P. Tolmie, “Towards detecting rumours in social media,” 2015.
[83] W. Ferreira and A. Vlachos, “Emergent: A novel data-set for stance classification,” 2016, doi: 10.18653/v1/n16-1138.
[84] W. Y. Wang, “‘Liar, liar pants on fire’: A new benchmark dataset for fake news detection,” 2017, doi: 10.18653/v1/P17-2067.
[85] G. C. Santia and J. R. Williams, “Buzzface: A news veracity dataset with facebook user commentary and egos,” Jun. 2018.
[86] K. Shu, D. Mahudeswaran, S. Wang, D. Lee, and H. Liu, “FakeNewsNet: A Data Repository with News Content, Social Context, and Spatiotemporal Information for Studying Fake News on Social Media,” Big Data, 2020, doi: 10.1089/big.2020.0062.
[87] J. Thorne, A. Vlachos, C. Christodoulopoulos, and A. Mittal, “FEVER: A large-scale dataset for fact extraction and verification,” 2018, doi: 10.18653/v1/n18-1074.
[88] O. Papadopoulou, M. Zampoglou, S. Papadopoulos, and I. Kompatsiaris, “A corpus of debunked and verified user-generated videos,” Online Inf. Rev., 2019, doi: 10.1108/OIR-03-2018-0101.
[89] F. Torabi Asr and M. Taboada, “Big Data and quality data for fake news and misinformation detection,” Big Data Soc., 2019, doi: 10.1177/2053951719843310.
[90] M. Gruppi, B. D. Horne, and S. Adal\i, “NELA-GT-2021: A Large Multi-Labelled News Dataset for The Study of Misinformation in News Articles,” arXiv Prepr. arXiv2203.05659, 2022.
[91] J. Nørregaard, B. D. Horne, and S. Adal, “Nela-gt-2018: A large multi-labelled news dataset for the study of misinformation in news articles,” in Proceedings of the international AAAI conference on web and social media, Apr. 2019, vol. 13, pp. 630–638.
[92] F. B. Gereme and W. Zhu, “Early detection of fake news “before it flies high,” 2019, doi: 10.1145/3358528.3358567.
[93] P. K. Roy and S. Chahar, “Fake Profile Detection on Social Networking Websites: A Comprehensive Review,” IEEE Trans. Artif. Intell., 2021, doi: 10.1109/tai.2021.3064901.
[94] S. Khaled, N. El-Tazi, and H. M. O. Mokhtar, “Detecting Fake Accounts on Social Media,” 2019, doi: 10.1109/BigData.2018.8621913.
[95] L. Caruccio, V. Deufemia, F. Naumann, and G. Polese, “Discovering Relaxed Functional Dependencies Based on Multi-Attribute Dominance,” IEEE Trans. Knowl. Data Eng., 2021, doi: 10.1109/TKDE.2020.2967722.
[96] S. Revathi and M. Suriakala, “Profile Similarity Communication Matching Approaches for Detection of Duplicate Profiles in Online Social Network,” 2018, doi: 10.1109/CSITSS.2018.8768751.
[97] M. D. Rahman, A. M. Likhon, A. S. Rahman, and M. H. Choudhury, “Detection of fake identities on twitter using supervised machine learning,” Brac University, 2019.
[98] M. A. Wani, N. Agarwal, S. Jabin, and S. Z. Hussain, “Analyzing Real and Fake users in Facebook Network based on Emotions,” 2019, doi: 10.1109/COMSNETS.2019.8711124.
[99] M. M. Swe and N. Nyein Myo, “Fake Accounts Detection on Twitter Using Blacklist,” 2018, doi: 10.1109/ICIS.2018.8466499.
[100] M. U. S. Khan, M. Ali, A. Abbas, S. U. Khan, and A. Y. Zomaya, “Segregating Spammers and Unsolicited Bloggers from Genuine Experts on Twitter,” IEEE Trans. Dependable Secur. Comput., 2018, doi: 10.1109/TDSC.2016.2616879.
[101] R. Aswani, A. K. Kar, and P. Vigneswara Ilavarasan, “Detection of Spammers in Twitter marketing: A Hybrid Approach Using Social Media Analytics and Bio Inspired Computing,” Inf. Syst. Front., 2018, doi: 10.1007/s10796-017-9805-8.
[102] M. Orabi, D. Mouheb, Z. Al Aghbari, and I. Kamel, “Detection of Bots in Social Media: A Systematic Review,” Inf. Process. Manag., 2020, doi: 10.1016/j.ipm.2020.102250.
[103] L. A. Cornelissen, R. J. Barnett, P. Schoonwinkel, B. D. Eichstadt, and H. B. Magodla, “A network topology approach to bot classification,” 2018, doi: 10.1145/3278681.3278692.
[104] S. Hurtado, P. Ray, and R. Marculescu, “Bot detection in reddit political discussion,” 2019, doi: 10.1145/3313294.3313386.
[105] N. Abu-El-Rub and A. Mueen, “BotCamp: Bot-driven interactions in social campaigns,” 2019, doi: 10.1145/3308558.3313420.
[106] H. Rosa, P. Calado, R. Ribeiro, J. P. Carvalho, B. Martins, and L. Coheur, “Using fuzzy fingerprints for cyberbullying detection in social networks,” 2018, doi: 10.1109/Fuzz-Ieee.2018.8491557.
[107] H. J. Escalante, E. Villatoro-Tello, S. E. Garza, A. P. López-Monroy, M. Montes-y-Gómez, and L. Villaseñor-Pineda, “Early detection of deception and aggressiveness using profile-based representations,” Expert Syst. Appl., 2017, doi: 10.1016/j.eswa.2017.07.040.
[108] S. R. Sahoo and B. B. Gupta, “Classification of various attacks and their defence mechanism in online social networks: a survey,” Enterprise Information Systems. 2019, doi: 10.1080/17517575.2019.1605542.
[109] S. Ma and Z. Yan, “PSNController: An unwanted content control system in pervasive social networking based on trust management,” ACM Trans. Multimed. Comput. Commun. Appl., 2015, doi: 10.1145/2808206.
[110] Q. Gong et al., “DeepScan: Exploiting Deep Learning for Malicious Account Detection in Location-Based Social Networks,” IEEE Commun. Mag., 2018, doi: 10.1109/MCOM.2018.1700575.
[111] Y. Zhou et al., “Analyzing and Detecting Money-Laundering Accounts in Online Social Networks,” IEEE Netw., 2018, doi: 10.1109/MNET.2017.1700213.
[112] S. Barbon, G. F. C. Campos, G. M. Tavares, R. A. Igawa, M. L. Proença, and R. C. Guido, “Detection of human, legitimate bot, and malicious bot in online social networks based on wavelets,” ACM Trans. Multimed. Comput. Commun. Appl., 2018, doi: 10.1145/3183506.
[113] J. Zhang, Q. Li, X. Wang, B. Feng, and D. Guo, “Towards fast and lightweight spam account detection in mobile social networks through fog computing,” Peer-to-Peer Netw. Appl., 2018, doi: 10.1007/s12083-017-0559-3.
[114] B. Liu et al., “Analysis of and defense against crowd-retweeting based spam in social networks,” World Wide Web, 2019, doi: 10.1007/s11280-018-0613-y.
[115] Z. Zhang and B. B. Gupta, “Social media security and trustworthiness: Overview and new direction,” Futur. Gener. Comput. Syst., 2018, doi: 10.1016/j.future.2016.10.007.
[116] Z. Zhou, H. Guan, M. M. Bhat, and J. Hsu, “Fake news detection via NLP is vulnerable to adversarial attacks,” 2019, doi: 10.5220/0007566307940800.
[117] P. Cogan, M. Andrews, M. Bradonjic, W. S. Kennedy, A. Sala, and G. Tucci, “Reconstruction and analysis of Twitter conversation graphs,” 2012, doi: 10.1145/2392622.2392626.
[118] R. Nishi et al., “Reply trees in Twitter: data analysis and branching process models,” Soc. Netw. Anal. Min., 2016, doi: 10.1007/s13278-016-0334-0.
[119] V. Gómez, H. J. Kappen, N. Litvak, and A. Kaltenbrunner, “A likelihood-based framework for the analysis of discussion threads,” World Wide Web, 2013, doi: 10.1007/s11280-012-0162-8.
[120] K. E. Daouadi, R. Z. Rebaï, and I. Amous, “Bot detection on online social networks using deep forest,” 2019, doi: 10.1007/978-3-030-19810-7_30.
[121] A. BozyiÄŸit, S. Utku, and E. Nasibov, “Cyberbullying detection: Utilizing social media features,” Expert Syst. Appl., 2021, doi: 10.1016/j.eswa.2021.115001.
[122] K. Kumari and J. P. Singh, “Identification of cyberbullying on multi-modal social media posts using genetic algorithm,” Trans. Emerg. Telecommun. Technol., 2021, doi: 10.1002/ett.3907.
[123] B. Haidar, M. Chamoun, and A. Serhrouchni, “Multilingual cyberbullying detection system: Detecting cyberbullying in Arabic content,” 2017, doi: 10.1109/CSNET.2017.8242005.
[124] K. Popat, S. Mukherjee, J. Strötgen, and G. Weikum, “Credibility assessment of textual claims on the web,” 2016, doi: 10.1145/2983323.2983661.
[125] K. Popat, S. Mukherjee, J. Strötgen, and G. Weikum, “Where the truth lies: Explaining the credibility of emerging claims on the web and social media,” 2017, doi: 10.1145/3041021.3055133.
[126] H. Rashkin, E. Choi, J. Y. Jang, S. Volkova, and Y. Choi, “Truth of varying shades: Analyzing language in fake news and political fact-checking,” 2017, doi: 10.18653/v1/d17-1317.
[127] L. Cui, S. Wang, and D. Lee, “Same: Sentiment-aware multi-modal embedding for detecting fake news,” 2019, doi: 10.1145/3341161.3342894.
[128] M. Del Vicario, W. Quattrociocchi, A. Scala, and F. Zollo, “Polarization and fake news: Early warning of potential misinformation targets,” ACM Trans. Web, 2019, doi: 10.1145/3316809.
[129] J. C. S. Reis, A. Correia, F. Murai, A. Veloso, F. Benevenuto, and E. Cambria, “Supervised Learning for Fake News Detection,” IEEE Intell. Syst., 2019, doi: 10.1109/MIS.2019.2899143.
[130] K. Anoop, P. Deepak, and L. V. Lajish, “Emotion cognizance improves health fake news identification,” 2020, doi: 10.1145/3410566.3410595.