Volume 25 , Issue 3 , PP: 501-510, 2025 | Cite this article as | XML | Html | PDF | Full Length Article
Mohamed Illafe 1 * , Maisarah Haji Mohd 2 , Feras Yousef 3 , Shamani Supramaniam 4
Doi: https://doi.org/10.54216/IJNS.250341
The study of geometric properties within the subclass of analytic functions has garnered significant attention in recent years due to its complex and intricate interplay between geometric function theory and complex analysis. This area of study provides deep insights into both mathematical theory and its practical applications. The exploration of these properties is not only of theoretical interest but also offers valuable implications for various applications in mathematical and engineering disciplines. In particular, this paper focuses on a detailed examination of the inclusion, neighborhood, and partial sums properties within a broad and general subclass of analytic functions. This class of functions is defined through a generalized multiplier transformation operator, which adds a layer of complexity to their analysis. By investigating these specific properties, this study aims to validate and build upon many existing findings documented in the literature, offering new perspectives and contributing to a deeper understanding of the field.
Analytic functions , inclusion , neighborhood , partial sums
[1] H. Silverman, Univalent functions with negative coefficients, J. Proc. Amer. Math. Soc., 51 (1975), 109-116.
[2] N. E. Cho, H. M. Srivastava, Argument estimates of certain analytic functions defined by a class of multiplier transformations, J. Math. Comp. Model., 37 (2003), 39-49. https://doi.org/10. 1016/S0895-7177(03)80004-3
[3] B. A. Uralegaddi, C. Somanatha, Certain classes of univalent functions, Singapore: World Scientific, 1992.
[4] G. S. Salagean, Subclasses of univalent functions, Berlin, Heidelberg: Springer Berlin Heidelberg, 2006.
[5] F. Yousef, S. Alroud, M. Illafe, New subclasses of analytic and bi-univalent functions endowed with coefficient estimate problems, Analysis and Mathematical Physics, 11 (2021), 1-12. https://doi. org/10.1007/s13324-021-00491-7
[6] M. Illafe, F. Yousef, M. Haji Mohd, S. Supramaniam, Fundamental properties of a class of analytic functions defined by a generalized multiplier transformation operator, International Journal of Mathematics and Computer Science, 19(4) (2024), 1203-1211. https://doi.org/10.1007/ s13324-021-00491-7
[7] M. Illafe, M. H. Mohd, F. Yousef, S. Supramaniam, Bounds for the second Hankel determinant of a general subclass of bi-univalent functions, Int. J. Math. Eng. Manag. Sci., 9(5) (2024), 1226-1239. https://doi.org/10.33889/IJMEMS.2024.9.5.065
[8] A. Hussen, M. S. Madi, A. M. Abominjil, Bounding coefficients for certain subclasses of bi-univalent functions related to Lucas-Balancing polynomials, AIMS Mathematics, 9(7) (2024), 18034-18047. https://doi.org/10.3934/math.2024879
[9] A. Hussen, A. Zeyani, Coefficients and Fekete–Szeg¨o functional estimations of bi-univalent subclasses based on Gegenbauer polynomials, Mathematics, 11(13) (2023), 2852. https://doi.org/10. 3390/math11132852
[10] A. Hussen, M. Illafe, Coefficient bounds for a certain subclass of bi-univalent functions associated with Lucas-balancing polynomials, Mathematics, 11(24) (2023), 4941. https://doi.org/10.3390/ math11244941
[11] M. Illafe, M. H. Mohd, F. Yousef, S. Supramaniam, A Subclass of bi-univalent functions defined by aSymmetric q-derivative operator and Gegenbauer polynomials, European Journal of Pure and Applied Mathematics, 17(4) (2024), 2467-2480. https://doi.org/10.29020/nybg.ejpam.v17i4. 5408
[12] A. Amourah, T. Al-Hawary, F. Yousef, J. Salah, Collection of Bi-Univalent Functions Using Bell Distribution Associated With Jacobi Polynomials, International Journal of Neutrosophic Science, 25(1) (2025), 228-28.
[13] T. Al-Hawary, I. Aldawish, B. A. Frasin, O. Alkam, F. Yousef, Necessary and sufficient conditions for normalized Wright functions to be in certain classes of analytic functions, Mathematics, 10(24) (2022), 4693. https://doi.org/10.3390/math10244693
[14] B. A. Frasin, T. Al-Hawary, F. Yousef, I. Aldawish, On subclasses of analytic functions associated with Struve functions, Nonlinear Functional Analysis and Applications, 27(1) (2022), 99-110. https: //doi.org/10.22771/nfaa.2022.27.01.06
[15] B. A. Frasin, F. Yousef, T. Al-Hawary, I. Aldawish, Application of generalized Bessel functions to classes of analytic functions, Afrika Matematika, 32 (2021), 431-439. https://doi.org/10. 1007/s13370-020-00835-9
[16] T. Al-Hawary, B. A. Frasin, F. Yousef, Coefficients estimates for certain classes of analytic functions of complex order, Afrika Matematika, 29 (2018), 1265-1271. https://doi.org/10.1007/ s13370-018-0623-z
[17] T. Al-Hawary, A. Amourah, A. Alsoboh, O. Ogilat, I. Harny, M. Darus, Applications of q´ Ultraspherical polynomials to bi-univalent functions defined by q´ Saigo’s fractional integral operators, AIMS Mathematics, 9(7) (2024), 17063-17075. https://doi.org/10.3934/math.2024828
[18] T. Al-Hawary, A. Amourah, J. Salah, F. Yousef, Two Inclusive Subfamilies of bi-univalent Functions, International Journal of Neutrosophic Science, 24(4) (2024), 315-323.
[19] F. Yousef, A. Amourah, B. A. Frasin, T. Bulboac˘a, An avant-Garde construction for subclasses of analytic bi-univalent functions, Axioms, 11(6) (2022), 267. https://doi.org/10.3390/ axioms11060267
[20] A. Amourah, B. A. Frasin, M. Ahmad, F. Yousef, Exploiting the Pascal distribution series and Gegenbauer polynomials to construct and study a new subclass of analytic bi-univalent functions, Symmetry, 14(1) (2022), 147. https://doi.org/10.3390/sym14010147
[21] F. Yousef, S. Alroud, M. Illafe, A comprehensive subclass of bi-univalent functions associated with Chebyshev polynomials of the second kind, Bolet´ın de la Sociedad Matem´atica Mexicana, 26 (2020), 329-339. https://doi.org/10.1007/s40590-019-00245-3
[22] M. Illafe, A. Amourah, M. Haji Mohd, Coefficient estimates and Fekete–Szeg¨o functional inequalities for a certain subclass of analytic and bi-univalent functions, Axioms, 11(4) (2022), 147. https: //doi.org/10.3390/axioms11040147
[23] M. Illafe, F. Yousef, M. Haji Mohd, S. Supramaniam, Initial coefficients estimates and Fekete–Szeg¨o inequality problem for a general subclass of bi-univalent functions defined by subordination, Axioms, 12(3) (2023), 235. https://doi.org/10.3390/axioms12030235
[24] H. Silverman, Partial sums of starlike and convex functions, J. Math. Analy. App., 209 (1997), 221-227. https://doi.org/10.1006/jmaa.1997.5361
[25] K. Vijaya, G. Murugusundaramoorthy, S. Yalc¸ın, Certain class of analytic functions involving Salagean type q–difference operator, Konuralp J. Math., 6(2) (2018), 264-271.