Journal of Intelligent Systems and Internet of Things

Journal DOI

https://doi.org/10.54216/JISIoT

Submit Your Paper

2690-6791ISSN (Online) 2769-786XISSN (Print)

Volume 17 , Issue 2 , PP: 436-457, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

Zero Watermarking Approach Based on Machine Learning and Cryptographic Protocol

Dalal Thair Mahjoub 1 * , Hala Bahjat Abdulwahab 2

  • 1 Faculty of Computer Science, University of Technology, Iraq - (cs.19.09@grad.uotechnology.edu.iq)
  • 2 Faculty of Computer Science, University of Technology, Iraq - (hala.b.abdulwahab@uotechnology.edu.iq)
  • Doi: https://doi.org/10.54216/JISIoT.170229

    Received: January 20, 2025 Revised: March 21, 2025 Accepted: July 14, 2025
    Abstract

    With the rapid increase of digital content distribution, video watermarking ownership has become an essential tool for detecting certification and tampering. This paper proposes a novel 3D video Zero-Watermarking Framework that integrates machine learning, cryptographic protocol, and entropy-based keyframe selection to ensure strength, inconvenience, and safety. The method operates at two levels: client-side watermark generation and server-side certification. On the client side, the keyframe is extracted using entropy analysis, features are obtained with different 3D Convolutional Neural Network (S3D-CNN), and adaptive noise is generated through the generative adversarial network (GANS). These components are paired with XOR to create a binary watermark key, which undergoes NIST random tests before being safely sent with the original video. On the server, Feige-Fiat-Shamir (FFS) certifies the watermark without highlighting the sensitive information of the zero-knowledge protocol. The system is evaluated against general attacks such as Gaussian noise, JPEG compression, staining, salt-and-pepper, rotation, and scaling. Performance metrics (PSNR, SSIM, NCC, and BER) with FFS protocols, showing 98.7% accuracy in verifying watermark integrity, display strong strength and inevitability. Experimental results, supporting safe and decentralized certification, confirm the effectiveness of the framework proposed to maintain watermarks under various attacks. Future work will focus on integrating blockchain technology and increasing the GAN model for real-world deployment.

    Keywords :

    Zero-watermarking , Generative convolutional network (GCN) , Feige-Fiat-Shamir (FFS) protocol , 3D video , Zero-knowledge proof , Separable 3D Convolution Network

    References

    [1]       C. V. Moya, J. R. Bermejo Higuera, J. Bermejo Higuera, and J. A. Sicilia Montalvo, “Implementation and Security Test of Zero-Knowledge Protocols on SSI Blockchain,” 2023, doi: 10.3390/app13095552.

     

    [2]       M. R. Naeemah, N. H. Harb, A. N. Mazher, and A. H. Ali, “The effect of cold microwave plasma on hormones and living tissues of mouse females using digital image processing,” J. Phys. Conf. Ser., vol. 1178, no. 1, p. 012034, 2019, doi: 10.1088/1742-6596/1178/1/012034.

     

    [3]       E. M. Talib, A. S. Jamil, N. F. Hassan, and R. Rana, “The robust digital video watermarking methods: A comparative study,” J. Soft Comput. Comput. Appl., vol. 1, no. 1, 2024. [Online]. Available: https://jscca.uotechnology.edu.iq/jscca/vol1/iss1/3.

     

    [4]       R. Ramanaharan, D. B. Guruge, and J. I. Agbinya, “DeepFake video detection: Insights into model generalisation—A systematic review,” Data Inf. Manag., p. 100099, 2025, doi: 10.1016/j.dim.2025.100099.

     

    [5]       Sarvar and M. Amirmazlaghani, “Defense against adversarial examples based on wavelet domain analysis,” Appl. Intell., vol. 53, no. 1, pp. 423–439, 2023, doi: 10.1007/s10489-022-03159-2.

     

    [6]       Y. Dong, R. Yan, and C. Yin, “An adaptive robust watermarking scheme based on chaotic mapping,” Sci. Rep., vol. 14, Oct. 2024, doi: 10.1038/s41598-024-76101-w.

     

    [7]       N. Lukas, A. Diaa, L. Fenaux, and F. Kerschbaum, “Leveraging optimization for adaptive attacks on image watermarks,” ICLR, pp. 1–15, 2024.

     

    [8]       G. Tripathi, M. A. Ahad, and G. Casalino, “A comprehensive review of blockchain technology: Underlying principles and historical background with future challenges,” Decis. Anal. J., vol. 9, p. 100344, 2023, doi: 10.1016/j.dajour.2023.100344.

     

    [9]       P. V. Sanivarapu, K. N. V. P. S. Rajesh, K. M. Hosny, and M. M. Fouda, “Digital watermarking system for copyright protection and authentication of images using cryptographic techniques,” 2022, doi: 10.3390/app12178724.

     

    [10]    H. Tao, L. Chongmin, J. Mohamad Zain, and A. N. Abdalla, “Robust image watermarking theories and techniques: A review,” J. Appl. Res. Technol., vol. 12, no. 1, Feb. 2014, doi: 10.1016/S1665-6423(14)71612-8.

     

    [11]    Han, R. Jhaveri, H. Wang, D. Qiao, and J. Du, “Application of robust zero-watermarking scheme based on federated learning for securing healthcare data,” IEEE J. Biomed. Health Inform., vol. PP, p. 1, Oct. 2021, doi: 10.1109/JBHI.2021.3123936.

     

    [12]    M. A. B. Alshahrani, N. A. A. Alghamdi, and A. A. Alzahrani, “A robust image watermarking technique using discrete wavelet transform and singular value decomposition,” Multimedia Tools Appl., vol. 82, no. 4, pp. 1–20, 2023, doi: 10.1007/s11042-022-13971-0.

     

    [13]    Megías, W. Mazurczyk, and M. Kuribayashi, “Data hiding and its applications: Digital watermarking and steganography,” 2021, doi: 10.3390/app112210928.

     

    [14]    K. Abdelhedi, F. Chaabane, and C. Ben Amar, “A SVM-based zero-watermarking technique for 3D videos traitor tracing,” in Advanced Concepts for Intelligent Vision Systems, Springer, 2020, pp. 373–383, doi: 10.1007/978-3-030-40605-9_32.

     

    [15]    Z. Ke et al., “Robust video watermarking based on deep neural network and curriculum learning,” in 2022 IEEE International Conference on e-Business Engineering (ICEBE), 2022, pp. 80–85, doi: 10.1109/ICEBE55470.2022.00023.

     

    [16]    Kaur, A. N. Hoshyar, V. Saikrishna, S. Firmin, and F. Xia, “Deepfake video detection: Challenges and opportunities,” Artif. Intell. Rev., vol. 57, no. 6, p. 159, 2024, doi: 10.1007/s10462-024-10810-6.

     

    [17]    M. Li, Y. Jiang, Y. Zhang, and H. Zhu, “Medical image analysis using deep learning algorithms,” Front. Public Health, vol. 11, pp. 1–28, 2023, doi: 10.3389/fpubh.2023.1273253.

     

    [18]    M. M. Laftah, “3D model watermarking based on wavelet transform,” Iraqi J. Sci., vol. 62, no. 12, pp. 4999–5007, 2021, doi: 10.24996/ijs.2021.62.12.36.

     

    [19]    G. Misra, B. Hazela, and B. K. Chaurasia, “A user-adaptive privacy-preserving authentication of IoMT using zero knowledge proofs with ECC,” Multimedia Tools Appl., 2025, doi: 10.1007/s11042-025-20759-5.

     

    [20]    Y. Desmedt, “The Fiat-Shamir identification protocol and the Feige-Fiat-Shamir signature scheme,” in Encyclopedia of Cryptography, Security and Privacy, Springer, 2025, pp. 2597–2598, doi: 10.1007/978-3-030-71522-9_319.

     

    [21]    G. Liu et al., “Zero-watermarking method for resisting rotation attacks in 3D models,” Neurocomputing, vol. 421, pp. 39–50, 2021, doi: 10.1016/j.neucom.2020.09.013.

     

    [22]    Y. Zhang, X. Wang, and L. Chen, “A novel watermarking scheme for 3D models based on adaptive mesh simplification,” J. Vis. Commun. Image Represent., vol. 90, p. 103661, 2023, doi: 10.1016/j.jvcir.2022.103661.

     

    [23]    J.-S. Lee et al., “Constructing gene features for robust 3D mesh zero-watermarking,” J. Inf. Secur. Appl., vol. 73, p. 103414, 2023, doi: 10.1016/j.jisa.2022.103414.

     

    [24]    K. Gupta, R. K. Gupta, and S. Kumar, “A secure digital watermarking technique for copyright protection of 3D models,” J. Inf. Secur. Appl., vol. 69, p. 103218, 2023, doi: 10.1016/j.jisa.2023.103218.

     

    [25]    X. Wu et al., “A novel zero-watermarking scheme based on NSCT-SVD and blockchain for video copyright,” EURASIP J. Wirel. Commun. Netw., vol. 2022, no. 1, p. 20, 2022, doi: 10.1186/s13638-022-02090-x.

     

    [26]    Fan, W. Sun, H. Zhao, W. Kang, and L. Changzhi, “Audio and video matching zero-watermarking algorithm based on NSCT,” Complexity, vol. 2022, pp. 1–14, Aug. 2022, doi: 10.1155/2022/3445583.

     

    [27]    X. Yu, C. Wang, and X. Zhou, “A hybrid transforms-based robust video zero-watermarking algorithm for resisting HEVC compression,” IEEE Access, vol. PP, p. 1, 2019, doi: 10.1109/ACCESS.2019.2936134.

     

    [28]    Li and Z. X. Wang, “A zero-watermarking algorithm based on scale-invariant feature reconstruction transform,” Applied Sciences, 2024.

     

    [29]    X. Liu et al., “Robust and discriminative zero-watermark scheme based on invariant features and similarity-based retrieval to protect large-scale DIBR 3D videos,” Inf. Sci., vol. 542, Jul. 2020, doi: 10.1016/j.ins.2020.06.066.

     

    [30]    X. Liu et al., Discriminative and Geometrically Robust Zero-Watermarking Scheme for Protecting DIBR 3D Videos, 2021, doi: 10.1109/ICME51207.2021.9428270.

    Cite This Article As :
    Thair, Dalal. , Bahjat, Hala. Zero Watermarking Approach Based on Machine Learning and Cryptographic Protocol. Journal of Intelligent Systems and Internet of Things, vol. , no. , 2025, pp. 436-457. DOI: https://doi.org/10.54216/JISIoT.170229
    Thair, D. Bahjat, H. (2025). Zero Watermarking Approach Based on Machine Learning and Cryptographic Protocol. Journal of Intelligent Systems and Internet of Things, (), 436-457. DOI: https://doi.org/10.54216/JISIoT.170229
    Thair, Dalal. Bahjat, Hala. Zero Watermarking Approach Based on Machine Learning and Cryptographic Protocol. Journal of Intelligent Systems and Internet of Things , no. (2025): 436-457. DOI: https://doi.org/10.54216/JISIoT.170229
    Thair, D. , Bahjat, H. (2025) . Zero Watermarking Approach Based on Machine Learning and Cryptographic Protocol. Journal of Intelligent Systems and Internet of Things , () , 436-457 . DOI: https://doi.org/10.54216/JISIoT.170229
    Thair D. , Bahjat H. [2025]. Zero Watermarking Approach Based on Machine Learning and Cryptographic Protocol. Journal of Intelligent Systems and Internet of Things. (): 436-457. DOI: https://doi.org/10.54216/JISIoT.170229
    Thair, D. Bahjat, H. "Zero Watermarking Approach Based on Machine Learning and Cryptographic Protocol," Journal of Intelligent Systems and Internet of Things, vol. , no. , pp. 436-457, 2025. DOI: https://doi.org/10.54216/JISIoT.170229