Journal of Intelligent Systems and Internet of Things

Journal DOI

https://doi.org/10.54216/JISIoT

Submit Your Paper

2690-6791ISSN (Online) 2769-786XISSN (Print)

Volume 18 , Issue 1 , PP: 150-168, 2026 | Cite this article as | XML | Html | PDF | Full Length Article

Arabic Fake News Detection Techniques: A Review

Maysoon Ahmed Abbas 1 * , Dhafar Hamed Abd 2 , Mondher Frikha 3 , Adel M. Alimi 4

  • 1 National School of Electronics and Telecoms of Sfax, University of Sfax, Tunisia - (maysoonahmed.abbas.doc@enetcom.usf.tn)
  • 2 College of Computer Science and Information Technology University of Anbar Ramadi, Iraq - (Dhafar.hamed@uoanbar.edu.iq)
  • 3 ATISP Lab, ENET’COM, University of Sfax, Tunisia - (rfrikha05@yahoo.fr)
  • 4 REGIM Lab, ENIS, University of Sfax, Tunisia - (Guy.gouarderes@iutbayonne.univ-pau.fr)
  • Doi: https://doi.org/10.54216/JISIoT.180111

    Received: March 01, 2025 Revised: June 02, 2025 Accepted: July 10, 2025
    Abstract

    People are efficient on websites and social media platforms for news and updates as their popularity has grown. Even official media outlets to publish news use social media networks. However, due to the massive volume of user-generated material, verifying the veracity of the presented information is necessary. To handle the large volume of posts being made, this procedure should be implemented automatically and effectively. Fake news detection (FND) estimates the chance that a certain news story (news report, editorial, expose, and the like) is purposefully misleading. Over the past ten years, there has been an increase in interest in Arabic FND, and several detection techniques have shown some promise in identifying fake news across various datasets. This paper provides an overview of the fake news definition, consequences, detection strategies, and datasets that are utilized for detecting Arabic fake news. The design of Arabic FND systems is mainly based on two methods. The first one uses machine learning (ML) methods that rely on manually produced statistical data extracted from the text and used as a feature to distinguish between real and fake news. In the second strategy, end-to-end systems for detection are created using deep learning (DL) approaches. The investigation conducted in this paper may help researchers understand the advantages and uses of Arabic FND systems to develop more efficient algorithms in this field.

    Keywords :

    Fake news , Arabic fake news , Machine learning , Deep learning

    References

    [1]       H. Yuan, J. Zheng, Q. Ye, Y. Qian, and Y. Zhang, "Improving fake news detection with domain-adversarial and graph-attention neural network," Decision Support Systems, vol. 151, 2021, Art. no. 113633. doi: 10.1016/j.dss.2021.113633.

     

    [2]       J. V. de Souza, J. Gomes Jr, F. M. de Souza Filho, A. M. de Oliveira Julio, and J. F. de Souza, "A systematic mapping on automatic classification of fake news in social media," Social Network Analysis and Mining, vol. 10, no. 1, 2020, pp. 1-21. doi: 10.1007/s13278-020-00633-1.

     

    [3]       S. Afroz, M. Brennan, and R. Greenstadt, "Detecting hoaxes, frauds, and deception in writing style online," in 2012 IEEE Symposium on Security and Privacy, pp. 461-475, 2012. doi: 10.1109/SP.2012.36.

     

    [4]       B. Collins, D. T. Hoang, N. T. Nguyen, and D. Hwang, "Fake news types and detection models on social media: a state-of-the-art survey," in Intelligent Information and Database Systems: 12th Asian Conference, ACIIDS 2020, Phuket, Thailand, March 23–26, 2020, pp. 562-573. doi: 10.1007/978-3-030-45147-7_46.

     

    [5]       R. K. Kaliyar, A. Goswami, P. Narang, and S. Sinha, "FNDNet: A deep convolutional neural network for fake news detection," Cognitive Systems Research, vol. 61, 2020, pp. 32-44. doi: 10.1016/j.cogsys.2020.04.004.

     

    [6]       S. B. Parikh and P. K. Atrey, "Media-rich fake news detection: A survey," in 2018 IEEE Conference on Multimedia Information Processing and Retrieval, pp. 436-441, 2018. doi: 10.1109/MIPR.2018.00093.

     

    [7]       M. K. Elhadad, K. F. Li, and F. Gebali, "Fake news detection on social media: a systematic survey," in 2019 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM), pp. 1-8, 2019. doi: 10.1109/PACRIM.2019.8849715.

     

    [8]       R. Oshikawa, J. Qian, and W. Y. Wang, "A survey on natural language processing for fake news detection," arXiv preprint arXiv: 1811.00770, 2018. [Online]. Available: https://arxiv.org/abs/1811.00770.

     

    [9]       M. F. Mridha, A. J. Keya, M. A. Hamid, M. M. Monowar, and M. S. Rahman, "A comprehensive review on fake news detection with deep learning," IEEE Access, vol. 9, 2021, pp. 156151-156170. doi: 10.1109/ACCESS.2021.3053280.

     

    [10]    V. L. Rubin, Y. Chen, and N. K. Conroy, "Deception detection for news: three types of fakes," Proceedings of the Association for Information Science and Technology, vol. 52, no. 1, 2015, pp. 1-4. doi: 10.1002/pra2.2015.14505201011.

     

    [11]    G. Amoudi, R. Albalawi, F. Baothman, A. Jamal, H. Alghamdi, and A. Alhothali, "Arabic rumor detection: A comparative study," Alexandria Engineering Journal, vol. 61, no. 12, 2022, pp. 12511-12523. doi: 10.1016/j.aej.2022.06.017.

     

    [12]    X. Zhou and R. Zafarani, "A survey of fake news: Fundamental theories, detection methods, and opportunities," ACM Computing Surveys (CSUR), vol. 53, no. 5, 2020, pp. 1-40. doi: 10.1145/3395040.

     

    [13]    H. Himdi, G. Weir, F. Assiri, and H. Al-Barhamtoshy, "Arabic fake news detection based on textual analysis," Arabian Journal for Science and Engineering, vol. 47, no. 8, 2022, pp. 10453-10469. doi: 10.1007/s13369-022-06147-0.

     

    [14]    M. A. Bsoul, A. Qusef, and S. Abu-Soud, "Building an optimal dataset for Arabic fake news detection," Procedia Computer Science, vol. 201, 2022, pp. 665-672. doi: 10.1016/j.procs.2022.01.094.

     

    [15]    G. Jardaneh, H. Abdelhaq, M. Buzz, and D. Johnson, "Classifying Arabic tweets based on credibility using content and user features," in 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), pp. 596-601, 2019. doi: 10.1109/JEEIT.2019.8743244.

     

    [16]    A. R. Mahlous and A. Al-Laith, "Fake news detection in Arabic tweets during the COVID-19 pandemic," International Journal of Advanced Computer Science and Applications, vol. 12, no. 6, 2021, pp. 778-788. doi: 10.14569/IJACSA.2021.0120676.

     

    [17]    M. Alazab, A. Awajan, A. Alazab, A. Khreisat, A. Alhyari, and R. Saadeh, "Fake-news detection system using machine-learning algorithms for Arabic-language content," Journal of Theoretical and Applied Information Technology, vol. 100, no. 16, 2022. [Online]. Available: http://www.jatit.org/volumes/research-papers/volume-100-no-16/20volume100no16.pdf.

     

    [18]    T. A. Wotaifi and B. N. Dhannoon, "Improving prediction of Arabic fake news using fuzzy logic and modified random forest model," Karbala International Journal of Modern Science, vol. 8, no. 3, 2022, pp. 477-485. doi: 10.33640/2405-609X.3072.

     

    [19]    M. Alkhair, K. Meftouh, K. Smaïli, and N. Othman, "An Arabic corpus of fake news: Collection, analysis and classification," in Arabic Language Processing: From Theory to Practice: 7th International Conference, ICALP 2019, Nancy, France, October 16–17, 2019, pp. 292-302. doi: 10.1007/978-3-030-36102-1_26.

     

    [20]    D. Mohdeb, M. Laifa, and M. Naidja, "An Arabic corpus for COVID-19 related fake news," in 2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI), pp. 1-5, 2021. doi: 10.1109/ICRAMI52589.2021.9650973.

     

    [21]    B. Hawashin, A. Althunibat, T. Kanan, S. AlZu'bi, and Y. Sharrab, "Improving Arabic fake news detection using optimized feature selection," in 2023 International Conference on Information Technology (ICIT), pp. 690-694, 2023. doi: 10.1109/ICIT56475.2023.10191157.

     

    [22]    H. T. Himdi and F. Y. Assiri, "Development of classification model based on Arabic textual analysis to detect fake news: Case studies," in 2023 1st International Conference on Advanced Innovations in Smart Cities (ICAISC), pp. 1-6, 2023. doi: 10.1109/ICAISC56475.2023.10191157.

     

    [23]    F. Aljwari, W. Alkaberi, A. Alshutayri, E. Aldhahri, N. Aljojo, and O. Abouola, "Multi-scale machine learning prediction of the spread of Arabic online fake news," Postmodern Openings, vol. 13, no. 1 Sup1, 2022, pp. 01-14. doi: 10.18662/po/13.1Sup1.451.

     

    [24]    T. A. Wotaifi and B. N. Dhannoon, "An effective hybrid deep neural network for Arabic fake news detection," Baghdad Science Journal, vol. 20, no. 1, 2023. doi: 10.21123/bsj.2023.20.1.1.

     

    [25]    F. Harrag and M. K. Djahli, "Arabic fake news detection: A fact-checking based deep learning approach," Transactions on Asian and Low-Resource Language Information Processing, vol. 21, no. 4, 2022, pp. 1-34. doi: 10.1145/3539915.

     

    [26]    A. B. Nassif, A. Elnagar, O. Elgendy, and Y. Afadar, "Arabic fake news detection based on deep contextualized embedding models," Neural Computing and Applications, vol. 34, no. 18, 2022, pp. 16019-16032. doi: 10.1007/s00500-021-05311-5.

     

    [27]    K. M. Fouad, S. F. Sabbeh, and W. Medhat, "Arabic fake news detection using deep learning," CMC-Comput. Mater. Contin., vol. 71, 2022, pp. 3647-3665. doi: 10.32604/cmc.2022.019198.

     

    [28]    M. Alkhair, A. Hocini, and K. Smaïli, "Spotting fake news in Arabic with machine and deep learning techniques," International Journal of Scientific Development and Research, vol. 8, no. 2, 2023, pp. 605-611. doi: 10.21276/ijsdr.2023.8.2.1.

     

    [29]    M. Al-Yahya, H. Al-Khalifa, H. Al-Baity, D. AlSaeed, and A. Essam, "Arabic fake news detection: Comparative study of neural networks and transformer-based approaches," Complexity, vol. 2021, 2021, pp. 1-10. doi: 10.1155/2021/6618059.

     

    [30]    S. B. Ali, Z. Kechaou, and A. Wali, "Arabic fake news detection in social media based on Ara-BERT," in 2022 IEEE 21st International Conference on Cognitive Informatics & Cognitive Computing (ICCI CC)*, pp. 214-220, 2022. doi: 10.1109/ICCI-CC55009.2022.00043.

     

    [31]    H. M. Alawadh, A. Alabrah, T. Meraj, and H. T. Rauf, "Attention-enriched Mini-BERT fake news analyzer using the Arabic language," Future Internet, vol. 15, no. 2, 2023, Art. no. 44. doi: 10.3390/fi15020044.

     

    [32]    I. Alnabrisi and M. Saad, "Detect Arabic fake news through deep learning models and transformers," Available at SSRN 4341610, 2023. [Online]. Available: https://ssrn.com/abstract=4341610.

     

    [33]    A. Awajan, "Enhancing Arabic fake news detection for Twitter's social media platform using shallow learning techniques," Journal of Theoretical and Applied Information Technology, vol. 101, no. 5, 2023. [Online]. Available: http://www.jatit.org/volumes/research-papers/volume-101-no-5/22volume101no5.pdf.

     

    [34]    H. Najadat, M. Tawalbeh, and R. Awawdeh, "Fake news detection for Arabic headlines-articles news data using deep learning," International Journal of Electrical & Computer Engineering, vol. 12, no. 4, 2022. doi: 10.11591/ijece.v12i4.11278.

     

    [35]    H. Saadany, E. Mohamed, and C. Orasan, "Fake or real? A study of Arabic satirical fake news," arXiv preprint arXiv: 2011.00452, 2020. [Online]. Available: https://arxiv.org/abs/2011.00452.

     

    [36]    E. M. B. Nagoudi, A. Elmadany, M. Abdul-Mageed, T. Alhindi, and H. Cavusoglu, "Machine generation and detection of Arabic manipulated and fake news," arXiv preprint arXiv: 2011.03092, 2020. [Online]. Available: https://arxiv.org/abs/2011.03092.

     

    [37]    S. Alyoubi, M. Kalkatawi, and F. Abukhodair, "The detection of fake news in Arabic tweets using deep learning," Applied Sciences, vol. 13, no. 14, 2023, Art. no. 8209. doi: 10.3390/app13148209.

     

    [38]    A. Khalil, M. Jarrah, M. Aldwairi, and M. Jaradat, "AFND: Arabic fake news dataset for the detection and classification of articles credibility," Data in Brief, vol. 42, 2022, Art. no. 108141. doi: 10.1016/j.dib.2022.108141.

     

    [39]    J. Khouja, "Stance prediction and claim verification: An Arabic perspective," arXiv preprint arXiv: 2005.10410, 2020. [Online]. Available: https://arxiv.org/abs/2005.10410.

     

    [40]    M. A. Bsoul, A. Qusef, and S. Abu-Soud, "Building an optimal dataset for Arabic fake news detection," Procedia Computer Science, vol. 201, 2022, pp. 665-672. doi: 10.1016/j.procs.2022.01.094.

     

    [41]    G. Jardaneh, H. Abdelhaq, M. Buzz, and D. Johnson, "Classifying Arabic tweets based on credibility using content and user features," in 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), pp. 596-601, 2019. doi: 10.1109/JEEIT.2019.8743244.

     

    [42]    A. R. Mahlous and A. Al-Laith, "Fake news detection in Arabic tweets during the COVID-19 pandemic," International Journal of Advanced Computer Science and Applications, vol. 12, no. 6, 2021, pp. 778-788. doi: 10.14569/IJACSA.2021.0120676.

     

    [43]    M. Alazab, A. Awajan, A. Alazab, A. Khreisat, A. Alhyari, and R. Saadeh, "Fake-news detection system using machine-learning algorithms for Arabic-language content," Journal of Theoretical and Applied Information Technology, vol. 100, no. 16, 2022. [Online]. Available: http://www.jatit.org/volumes/research-papers/volume-100-no-16/20volume100no16.pdf.

     

    [44]    T. A. Wotaifi and B. N. Dhannoon, "Improving prediction of Arabic fake news using fuzzy logic and modified random forest model," Karbala International Journal of Modern Science, vol. 8, no. 3, 2022, pp. 477-485. doi: 10.33640/2405-609X.3072.

     

    [45]    M. Alkhair, K. Meftouh, K. Smaïli, and N. Othman, "An Arabic corpus of fake news: Collection, analysis and classification," in Arabic Language Processing: From Theory to Practice: 7th International Conference, ICALP 2019, Nancy, France, October 16–17, 2019, pp. 292-302. doi: 10.1007/978-3-030-36102-1_26.

     

    [46]    D. Mohdeb, M. Laifa, and M. Naidja, "An Arabic corpus for COVID-19 related fake news," in 2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI), pp. 1-5, 2021. doi: 10.1109/ICRAMI52589.2021.9650973.

     

    Cite This Article As :
    Ahmed, Maysoon. , Hamed, Dhafar. , Frikha, Mondher. , M., Adel. Arabic Fake News Detection Techniques: A Review. Journal of Intelligent Systems and Internet of Things, vol. , no. , 2026, pp. 150-168. DOI: https://doi.org/10.54216/JISIoT.180111
    Ahmed, M. Hamed, D. Frikha, M. M., A. (2026). Arabic Fake News Detection Techniques: A Review. Journal of Intelligent Systems and Internet of Things, (), 150-168. DOI: https://doi.org/10.54216/JISIoT.180111
    Ahmed, Maysoon. Hamed, Dhafar. Frikha, Mondher. M., Adel. Arabic Fake News Detection Techniques: A Review. Journal of Intelligent Systems and Internet of Things , no. (2026): 150-168. DOI: https://doi.org/10.54216/JISIoT.180111
    Ahmed, M. , Hamed, D. , Frikha, M. , M., A. (2026) . Arabic Fake News Detection Techniques: A Review. Journal of Intelligent Systems and Internet of Things , () , 150-168 . DOI: https://doi.org/10.54216/JISIoT.180111
    Ahmed M. , Hamed D. , Frikha M. , M. A. [2026]. Arabic Fake News Detection Techniques: A Review. Journal of Intelligent Systems and Internet of Things. (): 150-168. DOI: https://doi.org/10.54216/JISIoT.180111
    Ahmed, M. Hamed, D. Frikha, M. M., A. "Arabic Fake News Detection Techniques: A Review," Journal of Intelligent Systems and Internet of Things, vol. , no. , pp. 150-168, 2026. DOI: https://doi.org/10.54216/JISIoT.180111