Journal of Intelligent Systems and Internet of Things

Journal DOI

https://doi.org/10.54216/JISIoT

Submit Your Paper

2690-6791ISSN (Online) 2769-786XISSN (Print)

Volume 12 , Issue 1 , PP: 20-32, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

Grey Wolf Optimizer Algorithm for Multi-Objective Optimal Power Flow

Y. V. Krishna Reddy 1 , R. Sireesha 2 , BP Mishra 3 , Pavithra G. 4 , Soban Badonia 5 *

  • 1 Department of Electrical and Electronics Engineering, SV College of Engineering, Tirupati, 517507, India - (yvkrishnareddy36@gmail.com)
  • 2 Department of Electrical and Electronics Engineering, SV College of Engineering, Tirupati, 517507, India - (sireesha.rachapalli@svcolleges.edu.in)
  • 3 JSS Academy of Technical Education, Sector-62, Noida, India - (bpmishra@jssaten.ac.in)
  • 4 Department of Electronics & Communication Engineering, Dayananda Sagar College of Engineering (DSCE), Bangalore- 560078, Karnataka, India. - (dr.pavithrag.8984@gmail.com)
  • 5 Master of Information Technology, University of Wollongong, Wollongong New South Wales, Australia - (sb032@uowmail.edu.au)
  • Doi: https://doi.org/10.54216/JISIoT.120102

    Received: August 19, 2023 Revised: November 01, 2023 Accepted: February 14, 2024
    Abstract

    This article introduces the Grey Wolf Optimizer (GWO) algorithm, a novel method aimed at tackling the challenges posed by the multi-objective Optimal Power Flow (OPF) problem. Drawing inspiration from the foraging behavior of grey wolves, GWO stands apart from traditional approaches by enhancing initial solutions without relying on gradient data collection from the objective function. In the domain of power system optimization, the OPF problem is widely acknowledged, involving constraints related to generator parameters, valve-point loading, reactive power, and active power. The proposed GWO technique is applied to IEEE 14-bus and 30-bus power systems, targeting four case objectives: minimizing cost with quadratic cost function, minimizing cost with inclusion of valve point, minimizing power loss, and minimizing both cost and losses simultaneously. For the IEEE-14 bus system, which requires meeting a power demand of 259 MW, GWO yields optimal costs of 827.0056 $/hr, 833.4691 $/hr, 1083.2410 $/hr, and 852.2255 $/hr across the four cases. Similarly, for the IEEE-30 bus system aiming to satisfy a demand of 283.4 MW, GWO achieves optimal costs of 801.8623 $/hr, 825.9321 $/hr, 1028.6309 $/hr, and 850.4794 $/hr for the respective cases. These optimal results are then compared with existing research outcomes, highlighting the efficiency and cost-effectiveness of the GWO algorithm when juxtaposed with alternative methods for solving the OPF problem.

    Keywords :

    Grey Wolf Optimizer , Optimal Power Flow , Valve-point loading , Active power loss , Power loss with fuel cost.

    References

    [1]     H. Kaur and Y.S Brar, “Optimal Power Flow Using Power World Simulator” IEEE Electrical Power & Energy Conference, Aug 2010, doi: 10.1109/EPEC.2010.5697188.

    [2]     X. Tong and M. Lin, "Semismooth Newton-Type Algorithms for Solving Optimal Power Flow Problems," 2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific, Dalian, China, pp. 1-7, 2005, doi: 10.1109/TDC.2005.1547080.

    [3]     D. I. Sun, B. Ashley, B. Brewer, A. Hughes and W. F. Tinney, "Optimal Power Flow By Newton Approach," in IEEE Transactions on Power Apparatus and Systems, vol. PAS-103, no. 10, pp. 2864-2880, Oct. 1984, doi: 10.1109/TPAS.1984.318284.

    [4]     X. Yan and V. H. Quintana, "Improving an interior-point-based OPF by dynamic adjustments of step sizes and tolerances," in IEEE Transactions on Power Systems, vol. 14, no. 2, pp. 709-717, May 1999, doi: 10.1109/59.761902.

    [5]     T. A. Al-Muhawesh, I. S. Qamber,"The established mega watt linear programming-based optimal power flow model applied to the real power 56-bus system in eastern province of Saudi Arabia", Energy, vol 33no 1, pp 12-21, 2008https://doi.org/10.1016/j.energy.2007.08.004.

    [6]     A.A. Abou El Ela, M.A. Abido, S.R. Spea, "Optimal power flow using differential evolution algorithm" Electric Power Systems Research, vol.80, no.7, pp 878-885,2010 doi: https://doi.org/10.1016/j.epsr.2009.12.018.

    [7]     B. E. Turkay and R. I. Cabadag, "Optimal power flow solution using particle swarm optimization algorithm," Eurocon 2013, Zagreb, Croatia, pp. 1418-1424, 2013,doi: 10.1109/EUROCON.2013.6625164.

    [8]     C. A. Roa-Sepulveda and B. J. Pavez-Lazo, "A solution to the optimal power flow using simulated annealing," 2001 IEEE Porto Power Tech Proceedings (Cat. No.01EX502), Porto, Portugal, vol.2, pp. 5, 2001, pp. doi: 10.1109/PTC.2001.964733.

    [9]     S. Duman, U. Güvenç, "Optimal power flow using gravitational search algorithm", Energy Conversion and Management, vol 59, pp 86-95, 2012, https://doi.org/10.1016/j.enconman. 2012.02.024.

    [10]   Al-Attar Ali Mohamed, Y. S. Mohamed, "Optimal power flow using moth swarm algorithm", Electric Power Systems Research, vol 142, pp.190-206, 2017, doi https://doi.org/10.1016/j.epsr.2016.09.025.

    [11]   Kılıç U. "Backtracking search algorithm-based optimal power flow with valve point effect and prohibited zones”, Electr Eng, vol 97, pp101-10, 2015, https://doi.org/10.1007/s00202-014-0315-0

    [12]   Abdel-Rahim AM, Shaaban SA, Raglend IJ. "Optimal power flow using atom search optimization", In: Innovations in power and advanced computing technologies (i-PACT); p.p 1-4, 2019, doi: 10.1109/i-PACT44901.2019.8960024.

    [13]   Bakirtzis AG, Biskas PN, Zoumas CE, Petridis V. "Optimal power flow by enhanced genetic algorithm", IEEE Trans Power Syst, 20:229-36, 2017, DOI: 10.1109/TPWRS.2002.1007886.

    [14]   M S Kumari et.al, "Enhanced genetic algorithm-based computation technique for multi-objective optimal power flow solution”, Int J Elec Power, vol 32, pp736-42, 2010, doi: https://doi.org/10.1016/j.ijepes.2010.01.010.

    [15]   K Vaisakh, LR Srinivas, K Meah. "Genetic evolving ant direction particle swarm optimization algorithm for optimal power flow with non-smooth cost functions and statistical analysis", Appl Soft Comput, vol 13, pp 4579-93, 2013, https://doi.org/10.1016/j.asoc.2013.07.002.

    [16]   Naderi E, Pourakbari-Kasmaei M, Cerna FV, Lehtonen M. "A novel hybrid selfadaptive heuristic algorithm to handle single- and multi-objective optimal power flow problems", Int J Elec Power, vol 125,pp1-17, 2021, https://doi.org/10.1016/j.ijepes.2020.106492.

    [17]   El-Sehiemy RA, Shaheen AM, Farrag SM. "Solving multi-objective optimal power flow problem via forced initialised differential evolution algorithm", IET Gener, Transm Distrib, vol 10, pp1634-47, 2016, DOI:  10.1049/iet-gtd.2015.0892.

    [18]   Attia A, El Sehiemy RA, Hasanien HM. "Optimal power flow solution in power systems using a novel Sine-Cosine algorithm", Int J Elec Power, vol 99, pp 331-43, 2018, https://doi.org/10.1016/j.ijepes.2018.01.024.

    [19]   Seyedali Mirjalili, Seyed Mohammad Mirjalili, Andrew Lewis, "Grey Wolf Optimizer", Advances in Engineering Software, vol 69, pp. 46–61, 2019, https://doi.org/10.1016/j.advengsoft.2013.12.007.

    [20]   Belgin Emre and Rengin Idil, “Optimal Power Flow Solution Using Particle Swarm Optimization Algorithm”, EuroCon  Zagreb, Croatia, 1-4 July 2013, https://doi.org/10.1016/S0142-0615(01)00067-9.

    [21]   Al-Attar Ali Mohamed et.al. “Optimal power flow using modified moth swarm algorithm” Electric Power Systems Research, vol 142, pp 109–121, 2019, https://doi.org/10.1016/j.future.2018.12.046.

    [22]   Duman S. "Symbiotic organisms search algorithm for optimal power flow problem based on valve-point effect and prohibited zones", Neural Comput Appl, vol 28, pp 3571-85, 2017, https://doi.org/10.1007/s00521-016-2265-0.

    [23]   Ongsakul W, Bhasaputra P "Optimal power flow with FACTS devices by hybrid TS/SA approach", Int J Electr Power Energy Syst vol 24, pp 851–857, 2002, https://doi.org/10.1016/S0142-0615(02)00006-6.

    [24]   Sood YR “Evolutionary programming based OPF and its validation for deregulated power system analysis”, Int J Electr Power Energy Syst, vol 29, pp. 65–75, 2007, https://doi.org/10.1016/j.ijepes.2006.03.024.

    [25]   Bouktir T, Slimani L, Mahdad B "Optimal power dispatch for large scale power system using stochastic search algorithms", Int J Power Energy Syst vol 28, pp1–10, 2008, doi:10.2316/Journal.203.2008.2.203-3501.

    [26]   Yuryevich J, Wong KP. "Evolutionary programming based optimal power flow algorithm", IEEE Trans Power Syst, vol 14 no.4, pp 1245–1250, 1999, doi: 10.1109/59.780917.

    [27]   Slimani L, Bouktir T. "Economic power dispatch of power system with pollution control using multi objective ant colony optimization", Int J Comput Intel Res, vol 3,pp.145–153, 2007.

    [28]   Ongsakul W, Tantimaporn T. "Optimal power flow by improved evolutionary programming", Electric Power Compon Syst vol 34, no 1,pp 79–95, 2006, doi: 10.1080/15325000500378707.

    [29]   Alsac O. "Optimal load flow with steady-state security", IEEE Trans Power Appar Syst, pp 745–751, 1974, doi: 10.1109/TPAS.1974.293924.

    [30]   Sayah S, Zehar K. "Modified differential evolution algorithm for optimal power flow with non-smooth cost functions", Energy Convers Manag vol 49, pp  3036–3042, 2008, , DOI: 10.1016/j.enconman.2008.05.016.

    [31]   Abido MA. "Optimal power flow using tabu search algorithm", Electric Power Compon Syst vol 30 pp 469–483, 2002, doi 10.1049/ip-gtd:20020269.

    [32]   Bakistzis AG, Biskas PN, Zoumas CE, Petridis V. "Optimal power flow by enhanced genetic algorithm", IEEE Trans Power Syst, vol 17, no 2, pp229–236, 2002, DOI: 10.1109/TPWRS.2002.1007909.

    [33]   Saini A, Chaturvedi DK, Saxena AK. "Optimal power flow solution: a GA-fuzzy system approach", Int J Emerg Electr Power Syst, vol 5,pp 1–21, 2016, DOI: 10.1515/ijeeps-2015-0006.

    [34]   Niknam T, Narimani MR, Jabbari M, Malekpour AR. "A modified shuffle frog leaping algorithm for multi-objective optimal power flow", Energy, vol 36, pp.6420–6432, 2011, DOI: 10.1016/j.energy.2011.08.030.

    [35]   Niknam T, Narimani MR, Aghaei J, Nayeripour M. "Modified honey bee mating optimisation to solve dynamic optimal power flow considering generator constraints" IET Gener Transm Distrib, vol 5, no 10, pp. 989–1002,2011, doi: 10.1049/iet-gtd.2010.0724.

    [36]   Bouchekara HREH et. al "Optimal power flow using an improved colliding bodies optimization algorithm", Appl Soft Comput, vol 42 pp.119-31, 2016, DOI: 10.1016/j.asoc.2016.01.041.

    [37]   Nguyen TT. "A high-performance social spider optimization algorithm for optimal power flow solution with single objective optimization", Energy, vol 171, pp. 218-40, 2019, DOI: 10.1016/j.energy.2019.01.005.

    [38]   Niknam T, Narimani MR, Azizipanah-Abarghooee R. "A new hybrid algorithm for optimal power flow considering prohibited zones and valve point effect", Energy Convers Manag, vol 58, pp.197-206, 2012, doi: 10.1016/j.enconman.2012.01.021.

    [39]   S. Surender Reddy, Bijwe PR. "Efficiency improvements in meta-heuristic algorithms to solve the optimal power flow problem", Int J Elec Power, vol 82, pp. 288-302, 2016, doi: 10.1016/j.ijepes.2016.03.047.

    [40]   Reddy SS, Bijwe PR, Abhyankar AR. "Faster evolutionary algorithm based optimal power flow using incremental variables", Electr Power Energy Syst, vol 54, pp.198–210, 2014, doi: 10.1016/j.ijepes.2016.03.047.

    [41]   Abaci K, Yamacli V. "Differential search algorithm for solving multi-objective optimal power flow problem", Int J Elec Power, vol 79,pp.1-10, 2016, doi: 10.1016/j.ijepes.2015.12.013.

    [42]   Malik TN, Asar A, Wyne MF, Akhtar S. “A New Hybrid Approach for the Solution of Nonconvex Economic Dispatch Problem with Valve-Point Effects”, Electric Power Systems Research, pp, 1128-1136, 2010. doi: 10.1016/j.epsr.2010.01.010.

    [43]   Yasar C, Ozyon S. “A New Hybrid Approach for Nonconvex Economic Dispartch Problem with Valve-Point Effect”, Energy, vol 36 pp. 5838-5845, Turkey, 2011.

    [44]   Niknam T, Narimani MR, Abarghoee RA. “A new hyrid algorithm for optimal power flow considering prohibited zones and valve point effect”, Energy Conversion and Management, vol 58 pp. 197- 206, Iran, February 2012. doi: 10.1016/j.enconman.2012.01.021.

    Cite This Article As :
    V., Y.. , Sireesha, R.. , Mishra, BP. , G., Pavithra. , Badonia, Soban. Grey Wolf Optimizer Algorithm for Multi-Objective Optimal Power Flow. Journal of Intelligent Systems and Internet of Things, vol. , no. , 2024, pp. 20-32. DOI: https://doi.org/10.54216/JISIoT.120102
    V., Y. Sireesha, R. Mishra, B. G., P. Badonia, S. (2024). Grey Wolf Optimizer Algorithm for Multi-Objective Optimal Power Flow. Journal of Intelligent Systems and Internet of Things, (), 20-32. DOI: https://doi.org/10.54216/JISIoT.120102
    V., Y.. Sireesha, R.. Mishra, BP. G., Pavithra. Badonia, Soban. Grey Wolf Optimizer Algorithm for Multi-Objective Optimal Power Flow. Journal of Intelligent Systems and Internet of Things , no. (2024): 20-32. DOI: https://doi.org/10.54216/JISIoT.120102
    V., Y. , Sireesha, R. , Mishra, B. , G., P. , Badonia, S. (2024) . Grey Wolf Optimizer Algorithm for Multi-Objective Optimal Power Flow. Journal of Intelligent Systems and Internet of Things , () , 20-32 . DOI: https://doi.org/10.54216/JISIoT.120102
    V. Y. , Sireesha R. , Mishra B. , G. P. , Badonia S. [2024]. Grey Wolf Optimizer Algorithm for Multi-Objective Optimal Power Flow. Journal of Intelligent Systems and Internet of Things. (): 20-32. DOI: https://doi.org/10.54216/JISIoT.120102
    V., Y. Sireesha, R. Mishra, B. G., P. Badonia, S. "Grey Wolf Optimizer Algorithm for Multi-Objective Optimal Power Flow," Journal of Intelligent Systems and Internet of Things, vol. , no. , pp. 20-32, 2024. DOI: https://doi.org/10.54216/JISIoT.120102