Journal of Intelligent Systems and Internet of Things

Journal DOI

https://doi.org/10.54216/JISIoT

Submit Your Paper

2690-6791ISSN (Online) 2769-786XISSN (Print)

Volume 7 , Issue 2 , PP: 60-70, 2022 | Cite this article as | XML | Html | PDF | Full Length Article

Intelligent Learning System to Help People with Color Impairment Using Image Processing Algorithms

R.A.E. Ibrahim 1 * , A. E. E. El Alfi 2 , A. AdbElbadie Abdallah 3

  • 1 Computer Science Department, Mansoura University/ Faculty of Specific Education, Egypt. - (rashaabdelbaky2020@gmail.com)
  • 2 Computer Science Department, Mansoura University/ Faculty of Specific Education, Egypt. - (ael.alfi10@gmail.com)
  • 3 Computer Science Department, Mansoura University/ Faculty of Specific Education, Egypt. - (ahmed_abdelbadie@mans.edu.eg)
  • Doi: https://doi.org/10.54216/JISIoT.070206

    Received: June 17, 2022 Accepted: December 19, 2022
    Abstract

    This study presents a novel framework to help people with color impairment in identifying colors. The proposed framework consists of three stages. These stages are electronically performing the Ishihara test, performing the color blindness type recognition test, and guiding the person to color by voice. The first stage, the person is subjected to an electronic color blindness test, by displaying different plates containing several points of different sizes and colors. The person is required to correctly identify the number or shape in the plate and at the end, the system determines the extent to which a person is color blind. The second stage is a color recognition test to determine the type of color blindness. If there is difficulty in determining red, this is called protanopia. But the difficulty in identifying the green color is called deuteranopia. While the inability to recognize the blue color is called tritanopia. And finally, the difficulty in identifying the colored style is called achromatopsia. The third stage is assistance phase and is divided into three subsectors are: smart educational system, identifying colors and extracting the content. The proposed system differs from other systems in that it is an integrated system. It includes identifying color blindness, determining its type, and finally aiding color blindness person. Also, it is the first system that deals with the rare type of color blindness called achromatopsia in addition to its other three types. The results obtained confirmed that the proposed system as well as the smart educational system are characterized by high accuracy and effectiveness.

    Keywords :

    Intelligent Learning System , Color Impairment , Image Processing

    References

    [1]  Nicolás González  Bardeci  and  María Gabriela  Lagorio, "A mathematical approach to assess the ability of light filters to improve color discriminability of color vision deficient persons ", Heliyon, Vol.7, No. 9, September 2021, PP.2-4.

    [2]  Ivan Reinaldo, Nadia Sarah Pulungan and Herru Darmadi, "Prototyping "Color in Life" edugame for Dichromatic Color Blind Awareness ",  Procedia Computer Science,  Vol. 179,   No. 27, 2021, PP.773-780.

    [3]  Katherine E.M. Tregillus et al., "Color Compensation in Anomalous Trichromats Assessed with fMRI", Current biology, Vol. 31, No. 5,  March 2021, PP.936-942.

    [4]  Fong-Gong  Wu  ,  Chao-Yuan  Tseng  and  Chun-Min  Cheng,  "The  composition  of  visual  texture design on surface for color vision deficiency (CVD)",  Computers in Human Behavior,  Vol.  91, February 2019, PP. 84-86.

    [5]  Meenakshi S and Anshu Singla, "A Fuzzy Based Method to Simulate and Color Correct Images for Varying Degrees of Color Blindness", Electrochemical Society Transactions, Vol. 107, No. 1, 2022, PP.10832-10840

    [6]  Sheikh Mohd Saleem, "deutranomalia: the commonest type of red-green color vision deficiency in kashmiris", international journal of scientific research, Vol.6, No.9, September 2017, PP.52 -54.

    [7]  Amir Rosenblatt, Eyal Cohen and Chaim Stolovitch, "Comparison of Ishihara Booklet with Color Vision  Smartphone  Applications",  Optometry  and  Vision  Science,  Vol.  93,  No.  7,  July  2016, PP.668-670.

    [8]  KeunYoung Ahn and YounJin Lee, "The Colors of Digital Textbook UI Design Elements for Smart Learning", AIC CONGRESS, Vol.26, No.1, 2022, PP.234-237.

    [9]  Rong  Ye  and  Ce  Li,  "  Colorblind  Image  Correction  Based  on  Segmentation  and  Similarity Judgement", Journal of Physics: Conference Series (1089- 5678), Vol. 1098, No.187, 2022, PP.20-28. 

    [10]  Kashif  Naseer  Qureshi  et al.,"  Internet  of  Things  for  education:  A  smart  and  secur e  system  for schools monitoring and alerting", Computers & Electrical Engineering  ,  Vol. 93, 2021, PP.107-109.  

    [11]  Satrughan Kumar Singh and Jainath Yadav, "Machine learning & image processing for handwritten digits  and  alphabets  recognition  from  document  image  through  MATLAB  simulation",  IOP Conference Series: Materials Science and Engineering, Vol.1084, No.1, March 2021, PP.13 -15.

    [12]  Yinan  Miao,  Jun  Young  Jeon  and  Gyuhae  Park,  "An  image  processing-based  crack  detection technique for pressed panel products",  Journal of Manufacturing Systems, Vol.57, No.29, 2020, PP.287-290.

    [13]  R.Udendhran, et al., "Enhancing image processing architecture using deep learning for embedded vision systems", Microprocessors and Microsystems, Vol. 76, July 2020, PP.10-12.

    [14]  Thoopsamut P and Limthanmaphon B, "Handwritten signature authentication using color coherence vector and signing behavior", 2nd international conference on information science and systems, 2019, PP.38-42. 

    [15]  Moslehi  M  and  de  Barros  FP,  "Using  color  coherence  vectors  to  evaluate  the  performance  of hydrologic  data  assimilation",  Water  Resour  Res,  Vol.55,  No.2,  2019,  PP.1717-1729. https://doi.org/10.1029/2018WR023533

    [16]  Reshma  Chaudhari  and  A.  M.  Patil,  "Content  Based  Image  Retrieval  Using  Color  and  Shape Features", Electronics and Instrumentation Engineering, Vol.1, No.5, 2012, PP.387-388.

    [17]  Greg Pass, Ramin Zabih and Justin Miller, "Comparing Images Using Color Coherence Vectors", Proceedings of the fourth ACM international conference on Multimedia, Vol.96, 1996, PP.66-67.a.  Available at: https://owlcation.com/ stem/ Image-Retrieval-Color-Coherence-Vector, Date of Access: 15 /3/2022, At:07:30am.

    [18]   Saluka  Ranasinghe  Kodituwakku  and  S.Selvarajah,  "Comparison  of  Color  Features  for  Image Retrieval", Indian Journal of Computer Science and Engineering, Vol.1, No.3, April 2014, PP.207-211.

    [19]  Ahmed  Abd  El-badie  Abd  Allah  Kamel  and  Faten  Abd  El-Sattar  Zahran  El-Mougi,  "A  Fuzzy Decision  Support  System  for  Diagnosis  of  Some  Liver  Diseases  in  Educational  Medical Institutions",  International  Journal  of  Fuzzy  Logic  and  Intelligent  Systems,  Vol.20,  No.4,  2020, PP.358-368.

    [20]  R.  Mukundan  and  K.  R.  Ramakrishnan.,  "Moment  Functions  in  Image  Analysis  Theory  and Applications", World Scientific Publishing Co. Pte. Ltd, Vol.981, No.2, 1998, PP.81-85. 

    [21]  E. E. Elalfi, M. F. Elatawy and Nadia M. Mahmoud, "Using Artificial Intelligence Techniques for Evaluating  Practical  Art  Products  for  the  Students  in  Art  Education",  International  Journal  of Computer Applications, Vol.182, No. 15, September 2018, PP.19-22.

    [22]  David M. W. Powers, "What the F-measure doesn't measure: Features, Flaws, Fallacies and Fixes", Science direct, Vol2, No.1, 2019, PP.10-15.  https://doi.org/10.48550/arXiv.1503.06410 

    Cite This Article As :
    Ibrahim, R.A.E.. , E., A.. , AdbElbadie, A.. Intelligent Learning System to Help People with Color Impairment Using Image Processing Algorithms. Journal of Intelligent Systems and Internet of Things, vol. , no. , 2022, pp. 60-70. DOI: https://doi.org/10.54216/JISIoT.070206
    Ibrahim, R. E., A. AdbElbadie, A. (2022). Intelligent Learning System to Help People with Color Impairment Using Image Processing Algorithms. Journal of Intelligent Systems and Internet of Things, (), 60-70. DOI: https://doi.org/10.54216/JISIoT.070206
    Ibrahim, R.A.E.. E., A.. AdbElbadie, A.. Intelligent Learning System to Help People with Color Impairment Using Image Processing Algorithms. Journal of Intelligent Systems and Internet of Things , no. (2022): 60-70. DOI: https://doi.org/10.54216/JISIoT.070206
    Ibrahim, R. , E., A. , AdbElbadie, A. (2022) . Intelligent Learning System to Help People with Color Impairment Using Image Processing Algorithms. Journal of Intelligent Systems and Internet of Things , () , 60-70 . DOI: https://doi.org/10.54216/JISIoT.070206
    Ibrahim R. , E. A. , AdbElbadie A. [2022]. Intelligent Learning System to Help People with Color Impairment Using Image Processing Algorithms. Journal of Intelligent Systems and Internet of Things. (): 60-70. DOI: https://doi.org/10.54216/JISIoT.070206
    Ibrahim, R. E., A. AdbElbadie, A. "Intelligent Learning System to Help People with Color Impairment Using Image Processing Algorithms," Journal of Intelligent Systems and Internet of Things, vol. , no. , pp. 60-70, 2022. DOI: https://doi.org/10.54216/JISIoT.070206