Journal of Intelligent Systems and Internet of Things

Journal DOI

https://doi.org/10.54216/JISIoT

Submit Your Paper

2690-6791ISSN (Online) 2769-786XISSN (Print)

Volume 2 , Issue 1 , PP: 33-45, 2021 | Cite this article as | XML | Html | PDF | Full Length Article

Recurrent Model for Automatic Detection Cardiac Arrhythmia on the Internet of Healthcare Things

Waleed Abd Elkhalik 1 *

  • 1 Faculty of Computers and Informatics, Zagazig University, Zagazig, Sharqiyah, 44519, Egypt - (waleed.abdlekhalik@zu.edu.eg)
  • Doi: https://doi.org/10.54216/JISIoT.020104

    Received: March 19, 2021 Accepted: July 25, 2021
    Abstract

    With the growing prevalence of the Internet of Health Things (IoHT), there is an increasing need for reliable and precise categorization of electrocardiogram (ECG) indications for the early detection of cardiovascular diseases. In this research, we propose a machine learning approach for ECG classification in IoHT applications. Our solution use wavelet transforms to clean the ECG records before passing them to the model. Then, a stack of long short-term memory (LSTM) cells is built to learn the temporal interrelations in the ECG signals and make accurate predictions. We assessed the performance of our model on a publicly available dataset of ECG signals, achieving an overall accuracy of 97.5%. The experimental findings demonstrate that our models can effectively classify ECG signals in IoHT applications, providing a valuable tool for the early discovery of vascular diseases. Furthermore, our model can be certainly incorporated into IoHT systems, providing a reliable and efficient solution for ECG classification.

    Keywords :

    Deep Learning , Internet of Healthcare Things (IoHT) , ECG classification , Arrhythmia Detection , Smart Healthcare.

    References

    [1].  Yao, Q., Fan, X., Cai, Y., Wang, R., Yin, L., & Li, Y. (2018, August). Time-incremental convolutional neural network for arrhythmia detection in varied-length electrocardiogram. In 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congre ss (DASC/PiCom/DataCom/CyberSciTech) (pp. 754-761). IEEE.

    [2].  Chang, K.C., Hsieh, P.H., Wu, M.Y., Wang, Y.C., Chen, J.Y., Tsai, F.J., Shih, E.S., Hwang, M.J. and Huang, T.C., 2021. Usefulness of machine learning-based detection and classification of cardiac arrhythmias with 12-lead electrocardiograms. Canadian Journal of Cardiology, 37(1), pp.94-104.

    [3].  Wang, R., Fan, J. and Li, Y., 2020. Deep multi-scale fusion neural network for multi-class arrhythmia detection. IEEE journal of biomedical and health informatics, 24(9), pp.2461-2472.

    [4].  Swapna, G., Soman, K. P., & Vinayakumar, R. (2018). Automated detection of cardiac arrhythmia using deep learning techniques. Procedia computer science, 132, 1192-1201. 

    [5].  Murugesan, B., Ravichandran, V., Ram, K., Preejith, S. P., Joseph, J., Shankaranarayana, S. M., & Sivaprakasam, M. (2018, June). Ecgnet: Deep network for arrhythmia classification. In 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA) (pp. 1 -6). IEEE.

    [6].  Liu, Z., Meng, X. A., Cui, J., Huang, Z., & Wu, J. (2018, October). Automatic identification of abnormalities in 12-lead ECGs using expert features and convolutional neural networks. In 2018 International Conference on Sensor Networks and Signal Processing (SNSP) (pp. 163-167). IEEE.

    [7].  Baloglu, U.B., Talo, M., Yildirim, O., San Tan, R. and Acharya, U.R., 2019. Classification of myocardial infarction with multi-lead ECG signals and deep CNN. Pattern recognition letters, 122, pp.23-30.

    [8].  Yang, T., Yu, L., Jin, Q., Wu, L., & He, B. (2017). Localization of origins of premature ventricular contraction by means of convolutional neural network from 12-lead ECG. IEEE Transactions on Biomedical Engineering, 65(7), 1662-1671.

    [9].  Yıldırım, Ö., Pławiak, P., Tan, R.S. and Acharya, U.R., 2018. Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Computers in biology and medicine, 102, pp.411-420.

    [10].  Mostayed, A., Luo, J., Shu, X. and Wee, W., 2018. Classification of 12-lead ECG signals with bidirectional LSTM network. arXiv preprint arXiv:1811.02090.

    [11].  Yao, Q., Fan, X., Cai, Y., Wang, R., Yin, L., & Li, Y. (2018, August). Time-incremental convolutional neural network for arrhythmia detection in varied-length electrocardiogram. In 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech) (pp. 754-761). IEEE.

    [12].  Xu, S. S., Mak, M. W., & Cheung, C. C. (2018). Towards end-to-end ECG classification with raw signal extraction and deep neural networks. IEEE journal of biomedical and health informatics, 23(4), 1574 -1584.

    [13].  Lyon, A., Ariga, R., Mincholé, A., Mahmod, M., Ormondroyd, E., Laguna, P., ... & Rodriguez, B. (2018). Distinct ECG phenotypes identified in hypertrophic cardiomyopathy using machine learning associate with arrhythmic risk markers. Frontiers in physiology, 9, 213.

    [14].  Jambukia, S. H., Dabhi, V. K., & Prajapati, H. B. (2018). ECG beat classification using machine learning techniques. International Journal of Biomedical Engineering and Technology, 26(1), 32-53.

    [15].  Goovaerts, G., Padhy, S., Vandenberk, B., Varon, C., Willems, R., & Van Huffel, S. (2018). A machine-learning approach for detection and quantification of QRS fragmentation.  IEEE journal of biomedical and health informatics, 23(5), 1980-1989. 

    [16].  Perlman, O., Katz, A., Amit, G., & Zigel, Y. (2015). Supraventricular tachycardia classification in the 12-lead ECG using atrial waves detection and a clinically based tree scheme.  IEEE journal of biomedical and health informatics, 20(6), 1513-1520.

    [17].  Luz, E. J. D. S., Schwartz, W. R., Cámara-Chávez, G., & Menotti, D. (2016). ECG-based heartbeat classification for arrhythmia detection: A survey. Computer methods and programs in biomedicine, 127, 144-164.

    [18].  Vozda, M., & Cerny, M. (2015). Methods for derivation of orthogonal leads from 12-lead electrocardiogram: A review. Biomedical signal processing and control, 19, 23-34.

    [19].  Jiang, S. Y., & Wang, L. H. (2018, October). Enhanced machine learning feature selection algorithm for cardiac arrhythmia in a personal healthcare application. In  2018 IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia) (pp. 39-42). IEEE.

    Cite This Article As :
    Abd, Waleed. Recurrent Model for Automatic Detection Cardiac Arrhythmia on the Internet of Healthcare Things. Journal of Intelligent Systems and Internet of Things, vol. , no. , 2021, pp. 33-45. DOI: https://doi.org/10.54216/JISIoT.020104
    Abd, W. (2021). Recurrent Model for Automatic Detection Cardiac Arrhythmia on the Internet of Healthcare Things. Journal of Intelligent Systems and Internet of Things, (), 33-45. DOI: https://doi.org/10.54216/JISIoT.020104
    Abd, Waleed. Recurrent Model for Automatic Detection Cardiac Arrhythmia on the Internet of Healthcare Things. Journal of Intelligent Systems and Internet of Things , no. (2021): 33-45. DOI: https://doi.org/10.54216/JISIoT.020104
    Abd, W. (2021) . Recurrent Model for Automatic Detection Cardiac Arrhythmia on the Internet of Healthcare Things. Journal of Intelligent Systems and Internet of Things , () , 33-45 . DOI: https://doi.org/10.54216/JISIoT.020104
    Abd W. [2021]. Recurrent Model for Automatic Detection Cardiac Arrhythmia on the Internet of Healthcare Things. Journal of Intelligent Systems and Internet of Things. (): 33-45. DOI: https://doi.org/10.54216/JISIoT.020104
    Abd, W. "Recurrent Model for Automatic Detection Cardiac Arrhythmia on the Internet of Healthcare Things," Journal of Intelligent Systems and Internet of Things, vol. , no. , pp. 33-45, 2021. DOI: https://doi.org/10.54216/JISIoT.020104