Volume 3 , Issue 1 , PP: 13-26, 2024 | Cite this article as | XML | Html | PDF | Full Length Article
Sandy Montajab Hazzouri 1 *
Doi: https://doi.org/10.54216/NIF.030103
The traditional methods of discovering objects no longer meet the requirements of the times as a result of their reliance on non-dynamic methods and as a result of their slow performance in light of the world's dependence on a huge amount of multimedia and social media. With the rapid development of deep learning providing more powerful tools capable of manipulating high-level and complex semantic features of objects. Several techniques have been developed to detect objects using deep learning algorithms. This research presents a comparative analysis of the most famous deep learning techniques for object detection, explaining their mechanisms, use cases and an experimental evaluation of their performance.
Algorithm , Deep learning , Object detection , Model
[1]. Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 580-587).
[2]. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788).
[3]. Wu, X., Sahoo, D., & Hoi, S. C. (2020). Recent advances in deep learning for object detection. Neurocomputing, 396, 39-64.
[4]. Jiao, L., Zhang, R., Liu, F., Yang, S., Hou, B., Li, L., & Tang, X. (2021). New generation deep learning for video object detection: A survey. IEEE Transactions on Neural Networks and Learning Systems.
[5]. Pitts, W., & McCulloch, W. S. (1947). How we know universals the perception of auditory and visual forms. The Bulletin of mathematical biophysics, 9(3), 127-147.
[6]. Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. science, 313(5786), 504-507.
[7]. Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009, June).Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition (pp. 248-255). Ieee.
[8]. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25.
[9]. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., & LeCun, Y. (2013). Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229.
[10]. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1-9).
[11]. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv: 1409 . 1556.
[12]. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 770-778).
[13]. O'Shea, K., & Nash, R. (2015). An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458.
[14]. Chan, T. H., Jia, K., Gao, S., Lu, J., Zeng, Z., & Ma, Y. (2015). PCANet: A simple deep learning baseline for image classification?. IEEE transactions on image processing, 24(12), 5017-5032.
[15]. Viola, P., & Jones, M. (2001, December). Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition. CVPR 2001 (Vol. 1, pp. I-I). Ieee.
[16]. Dalal, N., Triggs, B., & Schmid, C. (2006, May). Human detection using oriented histograms of flow and appearance. In European conference on computer vision (pp. 428-441). Springer, Berlin, Heidelberg.
[17]. Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international conference on computer vision (pp. 1440-1448).
[18]. Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards realtime object detection with region proposal networks. Advances in neural information processing systems, 28.
[19]. He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. In Proceedings of the IEEE international conference on computer vision (pp. 2961-2969).
[20]. Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature pyramid networks for object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2117- 2125).
[21]. Pramanik, A., Pal, S. K., Maiti, J., & Mitra, P. (2021). Granulated RCNN and multi-class deep sort for multi-object detection and tracking. IEEE Transactions on Emerging Topics in Computational Intelligence, 6(1), 171-181.
[22]. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016, October). Ssd: Single shot multibox detector. In European conference on computer vision (pp. 21-37). Springer, Cham.
[23]. Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense object detection. In Proceedings of the IEEE international conference on computer vision (pp. 2980-2988).
[24]. Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767.
[25]. Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934.
[26]. Uijlings, J. R., Van De Sande, K. E., Gevers, T., & Smeulders, A. W. (2013). Selective search for object recognition. International journal of computer vision, 104(2), 154-171.
[27]. Zou, Z., Shi, Z., Guo, Y., & Ye, J. (2019). Object detection in 20 years: A survey. arXiv preprint arXiv:1905.05055.
[28]. Aziz, L., Salam, M. S. B. H., Sheikh, U. U., & Ayub, S. (2020). Exploring deep learning-based architecture, strategies, applications and current trends in generic object detection: A comprehensive review. IEEE Access, 8, 170461-170495.