Volume 1 , Issue 2 , PP: 08-16, 2023 | Cite this article as | XML | Html | PDF | Full Length Article
Riad K. Al-Hamido 1 *
Doi: https://doi.org/10.54216/PAMDA.010201
In this paper, we introduce infra bi-topological structure which is a more general structure than infra-topological spaces. This new space make us enable to increate a new sub-classes of sets, called infra bi-open (bi-closed) sets, pairwise infra-open (closed) sets. also we define infra bi-closure, pairwise infra bi-interior and their basic properties are presented. The relations of these concepts with their counterparts in infra-topological space s are given and many examples are presented.
Infra bi-topological spaces , pairwise infra-open (closed) sets , infra bi-open  , (bi-closed) sets.
A. M. AL-Odhari, On infra topological space, International Journal of Mathematical Archive,
(2015), 6(11), 179-184.
[2] J. C. Kelly. Bitopological spaces. Proceedings of the London Mathematical Society,(1963), 3(1), 71 -89.
[3] R. Gowri, A.K.R. Rajayal, On Supra Bi-Topological space4s, IOSR Journal of Mathematics (IOSRJM) .No.5(113)(2017),55-58.
[4] S. Mashhour, A.A. Allam, F.S. Mahmoud and F.H. Khedr, On Supra topological spaces, Indian Jr.Pure
and Appl.Math.No.4(14)(1983),502-510.
[5] L. A. Zadeh. Fuzzy Sets. Inform. Control, (1965),8, 338-353.
[6] F. Smarandache, “Neutrosophy and Neutrosophic Logic, First International Conference on
Neutrosophy, Neutrosophic Logic, Set, Probability, and Statistics” University of New Mexico, Gallup,
NM 87301, USA (2002).
A. A Salama; F.Smarandache and Kroumov. “Neutrosophic crisp Sets and Neutrosophic crisp
Topological Spaces” Neutrosophic Sets and Systems, Vlo.2, (2014), pp.25-30.
B. A. Salama and S. A. Alblowi. Neutrosophic set and neutrosophic topological space. ISORJ,
Mathematics, Vol. (3), Issue 4, ( 2012), 31-35.
[7] Mashhour, S.; Allam, A.A.; Mahmoud F.S.; and Khedr, F.H.; On Supra topological spaces”, Indian
Jr.Pure and Appl.Math.No.4(14)(1983),502-510.
[8] R.K. Al-Hamido. “A study of multi-Topological Spaces”, PhD Theses ,AlBaath university ,
Syria(2019).
A. S. Mashhour, A. A. Allam, F. S. Mahmoud, and F. H. Kheder, “On supra topological spaces,”
Indian Journal of Pure and Applied Mathematics, vol. 14, pp. 502–510, 1983.
[9] T. Al-Shami, “Some results related to supra topological spaces,” Journal of Advanced Studies in
Topology, vol. 7, no. 4, pp. 283–294, 2016.
[10] R. Devi, S. Sampathkumar, and M. Caldas, “On α-open sets and sα-continuous maps,” General
Mathematics, vol. 16, pp. 77–84, 2008.
[11] O. R. Sayed, “Supra pre-open sets and supra pre-continuous on topological spaces,” Series
Mathematics and Information, vol. 20, pp. 79–88, 2010.
[12] O. R. Sayed and T. Noiri, “On supra b-open sets and supra bcontinuity on topological spaces,”
European Journal of Pure and Applied Mathematics, vol. 3, pp. 295–302, 2010.
[13] S. Jafari and S. Tahiliani, “Supra β-open sets and supra β-continuity on topological spaces,” Annales
Universitatis Scientiarium Budapestinensis, vol. 56, pp. 1–9, 2013.
[14] M. E. El-Shafei, M. Abo-Elhamayel, and T. M. Al-Shami, “On supra R-open sets and some
applications on topological spaces,” Journal of Progressive Research in Mathematics, vol. 8, pp. 1237 –
1248, 2016.
[15] T. Al-Shami, “On supra semi open sets and some applications on topological spaces,” Journal of
Advanced Studies in Topology, vol. 8, no. 2, pp. 144–153, 2017. T. M. Al-Shami, “Utilizing supra α-open sets to generate new types of supra compact and supra lindel¨of spaces,” Facta Universitatis,
Series: Mathematics and Informatics, vol. 32, pp. 151–162, 2017.
[16] T. M. Al-Shami, “Supra semi-compactness via supra topological spaces,” Journal of Taibah University
for Science, vol. 12, no. 3, pp. 338–343, 2018.
[17] T. M. Al-Shami, B. A. Asaad, and M. A. El-Gayar, “Various types of supra pre-compact and supra
pre-Lindel¨of spaces,”Missouri Journal of Mathematical Science, vol. 32, 2020.
[18] J. M. Mustafa, “Supra b-compact and supra b-Lindelof spaces,” Journal of Mathematics and
Applictions, vol. 36, pp. 79–83, 2013.
[19] G.Jayaparthasarathy; V.F.Little Flower; M.Arockia Dasan. “Neutrosophic Supra Topological
Applications in Data Mining Process”, Neutrosophic Sets and Systems, ,(2019) ,vol. 27, pp. 80 -97.
A. B.AL-Nafee; R.K. Al-Hamido; F.Smarandache. “Separation Axioms In Neutrosophic Crisp
Topological Spaces”,Journal of newtheory, (2018),vol. 22, pp.
[20] R. Gowri, A.K.R. Rajayal, “On Supra Bi-topological spaces”, IOSR Journal of Mathematics (IOSRJM) .No.5(113)(2017),55-58.
[21] J. C. Kelly. “Bi-topological spaces”. Proceedings of the London Mathematical Society, 3(1) ,(1963),
71-89.
[22] T.Y. Ozturk , A. Ozkan “Neutrosophic Bi-topological Spaces”, Neutrosophic Sets and Systems, vol.
30,(2019) ,pp. 88-97.
[23] R.K. Al-Hamido. “Neutrosophic Crisp Bi-Topological Spaces”, Neutrosophic Sets and Systems, vol.
21, (2018), pp. 66-73.
[24] M. Parimala, M. Karthika ,F. Smarandache. “Introduction to neutrosophic minimal structure”,
Neutrosophic Sets and Systems, vol. 36, (2020) , pp. 376-388.
[25] R. K. Al-Hamido, On Neutrosophic Tri-Topological space, (2018). Journal of newtheory, vol. 23, pp.
13-21.
[26] R.K. Al-Hamido, Q. H. Imran, K. A. Alghurabi, T. Gharibah, “On Neutrosophic Crisp Semi Alpha
Closed Sets”, Neutrosophic Sets and Systems”, vol. 21, 28-35, (2018).
[27] Q. H. Imran, F. Smarandache, R.K. Al-Hamido, R. Dhavasselan, “On Neutrosophic Semi Alpha open
Sets”, Neutrosophic Sets and Systems, vol. 18, 37-42, (2017).
[28] R.K. Al-Hamido, T. Gharibah, S. Jafari F.Smarandache, “On Neutrosophic Crisp Topology via NTopology”, Neutrosophic Sets and Systems, vol. 21, 96-109, (2018).
[29] F. Smarandache, A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set,
Neutrosophic Probability. American Research Press, Rehoboth, NM, (1999).
[30] F. Smarandache, Neutrosophy and Neutrosophic Logic, First International Conference on
Neutrosophy, Neutrosophic Logic, Set, Probability, and Statistics, University of New Mexico, Gallup,
NM 87301, USA (2002).
A. A.Salma, S.A. Alblowi,. Neutrosophic set and neutrosophic topological spaces. IOSR J.
Math., (2012) 3(4), 31–35.