Volume 1 , Issue 1 , PP: 23-30, 2023 | Cite this article as | XML | Html | PDF | Full Length Article
Khalifa AlShaqsi 1 *
Doi: https://doi.org/10.54216/PAMDA.010102
Let SH denote the class of functions f = h + g which are harmonic univalent and sense-preserving in the
unite disk U = {z : |z| < 1} where h(z) = z +P∞ k=2 akzk, g(z) =∞Pk=1 bkzk (|b1| < 1). In this paper we establish connections between various subclasses of harmonic univalent functions by applying certain integral operator involving the Touchard Polynomials.
Harmonic univalent , Touchard Polynomials , Integral Operator
[1] Duren P. Harmonic Mmapping in the plane Cambridge (Cambridge: Cambridge University Press)
[2] Jahangiri J. M., Harmonic functions starlike in the unit disk J. Math. Anal. Appl. 235 pp. 470-477, 1999.
[3] AlShaqsi K., On inclusion results of certain subclasses of analytic functions associated with generating
function AIP Conference Proceedings pp. 18–30 1 16, 2017.
[4] Silverman H., Harmonic univalent functions with negative coefficients Proc. Amer. Math. Soc. pp. 283–
289, 51, 1998.
[5] Silverman H. and Silvia E. M., Subclasses of harmonic univalent functions New Zeal. J. Math. 275–284,
28, 1999.
[6] Clunie J. and Shell-Small T. Harmonic univalent functions, Ann. Acad. Aci. Fenn. Ser. A I Math. 9 pp.
325, 1984.
[7] Jahangiri J. M. Coefficient bounds and univalence criteria for harmonic functions with negative coefficients
Ann. Univ. Mariae Curie – Sklodowska Sect A., 57–66, A 52, 1998.
[8] Avci Y and Zlotkiewicz E., On harmonic univalent mappings Ann. Uni¨. Mariae Curie- Sklodowska Sect
pp. 17 A 44 , 1990.
[9] Ponnusamy S. and Kaliraj A. S. On harmonic close-to-convex functions Comp. Methods and Function
Theory ,pp. 669–685, 12 2, 2012.