Galoitica: Journal of Mathematical Structures and Applications

Journal DOI

https://doi.org/10.54216/GJSMA

Submit Your Paper

2834-5568ISSN (Online)

Volume 11 , Issue 1 , PP: 47-53, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

On The Markov-Bernstein Inequalities with Weight Functions in Lp Spaces

Sergey Drominko 1 * , Erina Kovachiskaya 2

  • 1 Faculty of Information Technology and Robotics, Vitebsk State Technological University, Belarus - (Serdrominko1996@vsu.by)
  • 2 Faculty of Information Technology and Robotics, Vitebsk State Technological University, Belarus - (EriKovachi98rus@vsu.by)
  • Doi: https://doi.org/10.54216/GJMSA.0110105

    Received: October 27, 2023 Revised: March 02, 2024 Accepted: June 29, 2024
    Abstract

    In this paper, we study of the Markov- Bernstein inequality of a complex polynomial with exponential weight functions  e^(-r^2  z/2)   on the domain ├]-∞,+∞┤[,    we also study the Integral Markov-Bernstein inequality for the algebraic polynomials of degree 2m and degree m with algebraic weight functions on the domain [1,+∞┤[of type (1/x^2 )^(-n), and on the domain ├]0,+∞┤[of type (1/t)^(-n).

    Keywords :

    Markov &ndash , Bernstein inequality , weight functions , Weight Space , Lp-space

    References

    [1]       L. Lukashov, Inequalities for the derivatives of rational functions on several intervals. Izv. Ross. Akad. Nauk Ser. Mat., 68(2004), 115–138,(Russian); English translation in Izv. Math., 68(2004), 543 565.

    [2]       Serge kalmykov Be`la Nagy and Vilmos Totik, Bernestein- and Markov-Type inequalities, arxiv: 2014.0234V2 (math.ev) 21 May2021.

    [3]       GUVEN.A; ISRAFILOV, D-M. Multiplier Theorems in Weighted smirnov space. J.Korean Math Soc, 45, No 6, 2008, 1535-1548.

    [4]     T.Kilgore, Inter polation properties of polynomial of degree at most 2n Weighted by

    [5]       T.Kilgore, Markov and Bernstien inequalities in Lp for some Weighted algebraic and trigonometric poly mails, Journal of Inequalities and Application.4 (2005), 413-321.

    [6]       V. Totik, Bernstein and Markov type inequalities for trigonometric polynomials on general sets. Int. Math. Res. Not., IMRN, 11(2015), 2986–3020.

    [7]       Nagy and F. To´okos, Bernstein inequality in Lα norms. Acta Sci.Math. (Szeged), 79(2013), 129–174.

    Cite This Article As :
    Drominko, Sergey. , Kovachiskaya, Erina. On The Markov-Bernstein Inequalities with Weight Functions in Lp Spaces. Galoitica: Journal of Mathematical Structures and Applications, vol. , no. , 2024, pp. 47-53. DOI: https://doi.org/10.54216/GJMSA.0110105
    Drominko, S. Kovachiskaya, E. (2024). On The Markov-Bernstein Inequalities with Weight Functions in Lp Spaces. Galoitica: Journal of Mathematical Structures and Applications, (), 47-53. DOI: https://doi.org/10.54216/GJMSA.0110105
    Drominko, Sergey. Kovachiskaya, Erina. On The Markov-Bernstein Inequalities with Weight Functions in Lp Spaces. Galoitica: Journal of Mathematical Structures and Applications , no. (2024): 47-53. DOI: https://doi.org/10.54216/GJMSA.0110105
    Drominko, S. , Kovachiskaya, E. (2024) . On The Markov-Bernstein Inequalities with Weight Functions in Lp Spaces. Galoitica: Journal of Mathematical Structures and Applications , () , 47-53 . DOI: https://doi.org/10.54216/GJMSA.0110105
    Drominko S. , Kovachiskaya E. [2024]. On The Markov-Bernstein Inequalities with Weight Functions in Lp Spaces. Galoitica: Journal of Mathematical Structures and Applications. (): 47-53. DOI: https://doi.org/10.54216/GJMSA.0110105
    Drominko, S. Kovachiskaya, E. "On The Markov-Bernstein Inequalities with Weight Functions in Lp Spaces," Galoitica: Journal of Mathematical Structures and Applications, vol. , no. , pp. 47-53, 2024. DOI: https://doi.org/10.54216/GJMSA.0110105