Galoitica: Journal of Mathematical Structures and Applications

Journal DOI

https://doi.org/10.54216/GJSMA

Submit Your Paper

2834-5568ISSN (Online)

Volume 10 , Issue 2 , PP: 08-18, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

On Soft 2-metric spaces

Pshtiwan Sabir Noori 1 *

  • 1 Sherko Bekas High School, Kirkuk General Education Directorate, Kirkuk, Iraq - (pshtiwanmath6@gmail.com)
  • Doi: https://doi.org/10.54216/GJMSA.0100201

    Received: October 10, 2023 Revised: January 11, 2024 Accepted: March 10, 2024
    Abstract

    The main purpose of this article is to introduce the concept of soft2-metric spaces that are new metric spaces based on the soft-elements and to study their properties, also to introduce some related concepts such as soft2- open ball, soft2 closed ball, soft2- open sets, soft2 closed sets, soft2-interior elements, soft2-limit elements, soft2-closure of sets, and study some of their properties.  And that is proved that every soft2- open ball is a soft2- open set, every soft2- closed ball is a soft2- closed set.  And reformulated and proved some theorems in soft2-metric space, such as Cantor's theorem and other theorems.

    Keywords :

    soft2-elements , soft2-metric spaces , soft2- open sets , soft2-closed sets.

    References

    [1]     S. Gähler, “2-metrische Räume und ihre topologische Struktur”. Math. Nachr. 26, 115-118 (1963).

    [2]     S. Gahler, “Lineare 2-normierte Räume”, Math. Nachr., 28 (1965), 1-43.

    [3]     S. Gahler, “Über die uniformisierbarkeit 2-metrischer Räume”, Math. Nachr., 28 (1965), 235-244.

    [4]     K. Iseki, “Fixed point theorems in 2-metric spaces”, Math. Seminar Notes, Kobe Univ., 3 (1975), 133-136.

    [5]     B. K. Lahiri, P. Das and L. K. Dey, “Cantor’s theorem in 2-metric spaces and its applications to fixed point problems”. Taiwanese J Math 15:337–352 (2011).

    [6]     D. Molodtsov, “Soft Set Theory First Results” Computers and Mathematics with Applications 37 (1999) 19-31.

    [7]     S. Das and S. K. Samanta. “Soft Real Sets, Soft Real Numbers and Their Properties”. The Journal of Fuzzy Mathematics Vol. 20 No. 3, 2012.

    [8]     P. K. Maji, R. Biswas, and A. R. Roy. “Soft Set Theory “Computers and Mathematics with  Applications 45 (2003) 555-562.

    [9]     P. Majumdar, S. K. Samanta “Similarity measure of soft sets” New Mathematics and Natural Computation ·Vol. 4, No. 1 (2008).

    [10]   D. Pei, D. Miao. “From Soft Sets to Information Systems” Granular Computing, 2005, IEEE International Conference, Volume - 2. 617 – 622.

    [11]   P. Zhu and Q. Wen, “Operation of Soft Sets Revisited” Hindawi Publishing Corporation Journal Applied Mathematics. (2013).

    [12]   A. Sezgin and A. O. Atagun, “On operations of soft sets,” Computers & Mathematics with    Applications, vol. 61, no. 5, pp. 1457–1467, (2011).

    [13]   S. Das and S. K. Samanta, “One soft metric space”. The Journal of Fuzzy Mathematics. Vol. 21, No. 3 (2013).

     

     

    Cite This Article As :
    Sabir, Pshtiwan. On Soft 2-metric spaces. Galoitica: Journal of Mathematical Structures and Applications, vol. , no. , 2024, pp. 08-18. DOI: https://doi.org/10.54216/GJMSA.0100201
    Sabir, P. (2024). On Soft 2-metric spaces. Galoitica: Journal of Mathematical Structures and Applications, (), 08-18. DOI: https://doi.org/10.54216/GJMSA.0100201
    Sabir, Pshtiwan. On Soft 2-metric spaces. Galoitica: Journal of Mathematical Structures and Applications , no. (2024): 08-18. DOI: https://doi.org/10.54216/GJMSA.0100201
    Sabir, P. (2024) . On Soft 2-metric spaces. Galoitica: Journal of Mathematical Structures and Applications , () , 08-18 . DOI: https://doi.org/10.54216/GJMSA.0100201
    Sabir P. [2024]. On Soft 2-metric spaces. Galoitica: Journal of Mathematical Structures and Applications. (): 08-18. DOI: https://doi.org/10.54216/GJMSA.0100201
    Sabir, P. "On Soft 2-metric spaces," Galoitica: Journal of Mathematical Structures and Applications, vol. , no. , pp. 08-18, 2024. DOI: https://doi.org/10.54216/GJMSA.0100201