Galoitica: Journal of Mathematical Structures and Applications

Journal DOI

https://doi.org/10.54216/GJSMA

Submit Your Paper

2834-5568ISSN (Online)

Volume 9 , Issue 1 , PP: 45-51, 2023 | Cite this article as | XML | Html | PDF | Full Length Article

On Nil-clean Neutrosophic Rings

P. Prabakaran 1 *

  • 1 Department of Mathematics, Bannari Amman Institute of Technology, Sathyamangalam - 638401, Tamil Nadu, India. - (prabakaranpvkr@gmail.com)
  • Doi: https://doi.org/10.54216/GJMSA.090105

    Received: June 12, 2023 Revised: September 11, 2023 Accepted: December 04, 2023
    Abstract

    A ring is said to be nil-clean if every element of the ring can be written as a sum of an idempotent element and a nilpotent element of the ring. In this paper, we generalize this argument to neutrosophic structure. We introduce the structure of nil-clean neutrosophic ring and some of its elementary properties are presented. Also, we have found the equivalence between classical nil-clean ring R and the corresponding neutrosophic ring R(I), refined neutrosophic ring R(I1, I2), and n-refined neutrosophic ring Rn(I).

    Keywords :

    Clean ring , nil-clean ring , neutrosophic ring , refined neutrosophic ring , clean neutrosophic ring , nil-clean neutrosophic ring.

    References

    [1] M. Abobala, On Some Special Elements In Neutrosophic Rings and Refined Neutrosophic Rings, Journal of New Theory, vol. 33, 2020.

    [2] M. Abobala, A Study of Nil Ideals and Kothey Conjecture in Neutrosophic Rings, International Journal of Mathematics and Mathematical Sciences, vol. 1, 2021.

    [3] M. Abobala, M. Bal and A. Hatip, A Study Of Some Neutrosophic Clean Rings, International Journal of Neutrosophic Science (IJNS) Vol. 18, No. 01, pp. 14-19, 2022

    [4] A. A. A. Agboola, A. D. Akinola, and O. Y. Oyebola, Neutrosophic Rings I, International J.Math combin, Vol 4, pp. 1-14, 2011.

    [5] A. A. A. Agboola , E. O. Adeleke and S. A, Akinleye, Neutrosophic Ring II, International, J. Math. Combin. 2(1), 2012.

    [6] M. Abobala, On Some Special Substructures of Neutrosophic Rings and Their Properties, International Journal of Neutrosophic Science”, Vol. 4, pp. 72-81, 2020.

    [7] E.O. Adeleke, A.A.A. Agboola and F. Smarandache, Refined Neutrosophic Rings I, International Journal of Neutrosophic Science, Vol 2 , pp 77-81, 2020.

    [8] E.O. Adeleke, A.A.A. Agboola and F. Smarandache, ”Refined Neutrosophic Rings II”, International Journal of Neutrosophic Science, Vol 2, pp 89-94, 2020.

    [9] D.D. Anderson, V.P. Camilo, Commutative rings whose elements are a sum of a unit and idempotent, Comm. Algebra, 30 (2002), pp. 3327-3336.

    [10] S. Breaz, G. Calugareanu, P. Danchev, T. Micu, Nil-clean matrix rings, Linear Algebra Appl., 439 (2013), pp. 3115-3119.

    [11] T. Chalabathi and K. Kumar, Neutrosophic Units of Neutrosophic Rings and Fields, Neutrosophic Sets and Systems, vol 21, pp 5-9, 2018.

    [12] A.J. Diesl, Nil clean rings, J. Algebra, 383 (2013), pp. 197-211.

    [13] W. B. V. Kandasamy and F. Smarandache, Some Neutrosophic Algebraic Structures and Neutrosophic n-Algebraic Structures (Arizona: Hexis Phoenix), 2006.

    [14] W. B. V. Kandasamy and F. Smarandache, Neutrosophic Rings (Arizona: Hexis Phoenix), 2006.

    [15] W.K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc., 229 (1977), pp. 269- 278.

    [16] W.K. Nicholson, Y. Zhou, Rings in which elements are uniquely the sum of an idempotent and a unit, Glasg. Math. J., 46 (2004), pp. 227-236.

    [17] M. Samiei, Commutative rings whose proper homomorphic images are nil clean, Novi Sad J. Math. Vol. 50, No. 1, 2020, 37-44

    [18] F. Smarandache and M. Abobala, n-Refined neutrosophic Rings, International Journal of Neutrosophic Science, vol. 5, pp. 83-90, 2020.

    Cite This Article As :
    Prabakaran, P.. On Nil-clean Neutrosophic Rings. Galoitica: Journal of Mathematical Structures and Applications, vol. , no. , 2023, pp. 45-51. DOI: https://doi.org/10.54216/GJMSA.090105
    Prabakaran, P. (2023). On Nil-clean Neutrosophic Rings. Galoitica: Journal of Mathematical Structures and Applications, (), 45-51. DOI: https://doi.org/10.54216/GJMSA.090105
    Prabakaran, P.. On Nil-clean Neutrosophic Rings. Galoitica: Journal of Mathematical Structures and Applications , no. (2023): 45-51. DOI: https://doi.org/10.54216/GJMSA.090105
    Prabakaran, P. (2023) . On Nil-clean Neutrosophic Rings. Galoitica: Journal of Mathematical Structures and Applications , () , 45-51 . DOI: https://doi.org/10.54216/GJMSA.090105
    Prabakaran P. [2023]. On Nil-clean Neutrosophic Rings. Galoitica: Journal of Mathematical Structures and Applications. (): 45-51. DOI: https://doi.org/10.54216/GJMSA.090105
    Prabakaran, P. "On Nil-clean Neutrosophic Rings," Galoitica: Journal of Mathematical Structures and Applications, vol. , no. , pp. 45-51, 2023. DOI: https://doi.org/10.54216/GJMSA.090105