Galoitica: Journal of Mathematical Structures and Applications

Journal DOI

https://doi.org/10.54216/GJSMA

Submit Your Paper

2834-5568ISSN (Online)

Volume 7 , Issue 2 , PP: 18-30, 2023 | Cite this article as | XML | Html | PDF | Full Length Article

Introduction to Symbolic 2-Plithogenic Probability Theory

Mohamed Bisher Zeina 1 * , Nizar Altounji 2 , Mohammad Abobala 3 , Yasin Karmouta 4

  • 1 Department of Mathematical Statistics, Faculty of Science, University of Aleppo, Aleppo, Syria - (bisher.zeina@gmail.com)
  • 2 Faculty of Science, Department of Mathematical Statistics, University of Aleppo, Aleppo, Syria - (nizar.altounji.94@hotmail.com)
  • 3 Department of Mathematics, Faculty of Science, Tishreen University, Latakia, Syria - (mohammadabobala777gmail.com)
  • 4 Faculty of Science, Department of Mathematical Statistics, University of Aleppo, Aleppo, Syria - (yassinkarmouta@gmail.com)
  • Doi: https://doi.org/10.54216/GJMSA.070202

    Received: March 19, 2023 Revised: June 28, 2023 Accepted: August 17, 2023
    Abstract

    In this paper we present for the first time the concept of symbolic plithogenic random variables and study its properties including expected value and variance. We build the plithogenic formal form of two important distributions that are exponential and uniform distributions. We find its probability density function and cumulative distribution function in its plithogenic form. We also derived its expected values and variance and the formulas of its random numbers generating. We finally present the fundamental form of plithogenic probability density and cumulative distribution functions. All the theorems were proved depending on algebraic approach using isomorphisms. This paper can be considered the base of symbolic plithogenic probability theory.

    Keywords :

    Plithogenic , Probability Density Function , Cumulative Distribution Function , Random Numbers Generation , Exponential Distribution , Uniform Distribution.

    References

    [1] F. Smarandache, “Introduction to Neutrosophic Measure, Neutrosophic Integral, and Neutrosophic Probability,” ArXiv, 2013.

    [2] F. Smarandache, “Introduction to Neutrosophic Statistics,” Branch Mathematics and Statistics Faculty and Staff Publications, Jan. 2014, Accessed: Feb. 21, 2023. [Online]. Available: https://digitalrepository.unm.edu/math_fsp/33

    [3] F. Smarandache, “Indeterminacy in neutrosophic theories and their applications,” International Journal of Neutrosophic Science, vol. 15, no. 2, 2021, doi: 10.5281/zenodo.5295819.

    [4] F. Smarandache, “(T, I, F)-Neutrosophic Structures,” Applied Mechanics and Materials, vol. 811, 2015, doi: 10.4028/www.scientific.net/amm.811.104.

    [5] F. Smarandache, “Neutrosophic theory and its applications,” Brussels, vol. I, 2014.

    [6] W. B. Vasantha Kandasamy and Florentin. Smarandache, “Fuzzy cognitive maps and neutrosophic cognitive maps,” p. 211, 2003.

    [7] M. Akram, Shumaiza, and F. Smarandache, “Decision-making with bipolar neutrosophic TOPSIS and bipolar neutrosophic ELECTRE-I,” Axioms, vol. 7, no. 2, 2018, doi: 10.3390/axioms7020033.

    [8] F. Smarandache et al., “Introduction to neutrosophy and neutrosophic environment,” Neutrosophic Set in Medical Image Analysis, pp. 3–29, 2019, doi: 10.1016/B978-0-12-818148-5.00001-1.

    [9] S. Broumi, M. B. Zeina, M. Lathamaheswari, A. Bakali, and M. Talea, “A Maple Code to Perform Operations on Single Valued Neutrosophic Matrices,” Neutrosophic Sets and Systems, vol. 49, 2022.

    [10] M. Miari, M. T. Anan, and M. B. Zeina, “Single Valued Neutrosophic Kruskal-Wallis and Mann Whitney Tests,” Neutrosophic Sets and Systems, vol. 51, 2022, doi: 10.5281/zenodo.7163297.

    [11] M. Mullai, K. Sangeetha, R. Surya, G. M. Kumar, R. Jeyabalan, and S. Broumi, “A Single Valued neutrosophic Inventory Model with Neutrosophic Random Variable,” International Journal of Neutrosophic Science, vol. 1, no. 2, 2020, doi: 10.5281/zenodo.3679510.

    [12] M. B. Zeina, O. Zeitouny, F. Masri, F. Kadoura, and S. Broumi, “Operations on single-valued trapezoidal neutrosophic numbers using (α, β, γ)-cuts ‘maple package,’” International Journal of Neutrosophic Science, vol. 15, no. 2, 2021, doi: 10.54216/IJNS.150205.

    [13] D. Nagarajan and J. Kavikumar, “Single-Valued and Interval-Valued Neutrosophic Hidden Markov Model,” Math Probl Eng, vol. 2022, 2022, doi: 10.1155/2022/5323530.

    [14] K. T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets Syst, vol. 20, no. 1, pp. 87–96, 1986, doi: 10.1016/S0165-0114(86)80034-3.

    [15] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338–353, 1965, doi: 10.1016/S0019-9958(65)90241-X.

    [16] P. K. Singh, “Complex Plithogenic Set,” International Journal of Neutrosophic Science, vol. 18, no. 1, 2022, doi: 10.54216/IJNS.180106.

    [17] S. Alkhazaleh, “Plithogenic Soft Set,” Neutrosophic Sets and Systems, 2020.

    [18] N. Martin and F. Smarandache, “Introduction to Combined Plithogenic Hypersoft Sets,” Neutrosophic Sets and Systems, vol. 35, 2020, doi: 10.5281/zenodo.3951708.

    [19] F. Smarandache, Plithogeny, Plithogenic Set, Logic, Probability, and Statistics. Belgium: Pons, 2018. Accessed: Feb. 23, 2023. [Online]. Available: http://arxiv.org/abs/1808.03948

    [20] F. Smarandache, “Introduction to the Symbolic Plithogenic Algebraic Structures (revisited),” Neutrosophic Sets and Systems , vol. 53, Jan. 2023, doi: 10.5281/ZENODO.7536105.

    [21] N. M. Taffach and A. Hatip, “A Review on Symbolic 2-Plithogenic Algebraic Structures,” Galoitica: Journal of Mathematical Structures and Applications, vol. 5, no. 1, pp. 08–16, 2023, doi: 10.54216/GJMSA.050101.

    [22] R. Ali and Z. Hasan, “An Introduction To The Symbolic 3-Plithogenic Modules,” Galoitica: Journal of Mathematical Structures and Applications, vol. 6, no. 1, pp. 13–17, 2023, doi: 10.54216/GJMSA.060102.

    [23] F. Smarandache, “Introduction to Plithogenic Logic as generalization of MultiVariate Logic,” Neutrosophic Sets and Systems, vol. 45, 2021.

    [24] R. Ali and Z. Hasan, “An Introduction to The Symbolic 3-Plithogenic Vector Spaces,” Galoitica: Journal of Mathematical Structures and Applications, vol. 6, no. 1, pp. 08–12, 2023, doi: 10.54216/GJMSA.060101.

    [25] F. Smarandache, “Plithogenic Probability & Statistics are generalizations of MultiVariate Probability & Statistics,” Neutrosophic Sets and Systems, vol. 43, 2021.

    [26] F. Smarandache, “Plithogenic Set, an Extension of Crisp, Fuzzy, Intuitionistic Fuzzy, and Neutrosophic Sets,” Neutrosophic Sets and Systems, vol. 21, pp. 153–166, 2018.

    [27] M. Abdel-Basset and R. Mohamed, “A novel plithogenic TOPSIS- CRITIC model for sustainable supply chain risk management,” J Clean Prod, vol. 247, Feb. 2020, doi: 10.1016/J.JCLEPRO.2019.119586.

    [28] M. Abdel-Basset, M. El-hoseny, A. Gamal, and F. Smarandache, “A novel model for evaluation Hospital medical care systems based on plithogenic sets,” Artif Intell Med, vol. 100, Sep. 2019, doi: 10.1016/J.ARTMED.2019.101710.

    [29] N. M. Taffach and A. Hatip, “A Brief Review on The Symbolic 2-Plithogenic Number Theory and Algebraic Equations,” Galoitica: Journal of Mathematical Structures and Applications, vol. 5, no. 1, pp. 36–44, 2023, doi: 10.54216/GJMSA.050103.

    [30] F. Sultana et al., “A study of plithogenic graphs: applications in spreading coronavirus disease (COVID-19) globally,” J Ambient Intell Humaniz Comput, p. 1, 2022, doi: 10.1007/S12652-022-03772-6.

    [31] M. Abdel-Basset, R. Mohamed, A. E. N. H. Zaied, and F. Smarandache, “A hybrid plithogenic decision-making approach with quality function deployment for selecting supply chain sustainability metrics,” Symmetry (Basel), vol. 11, no. 7, Jul. 2019, doi: 10.3390/SYM11070903.

    [32] M. B. Zeina and A. Hatip, “Neutrosophic Random Variables,” Neutrosophic Sets and Systems, vol. 39, 2021, doi: 10.5281/zenodo.4444987.

    [33] C. Granados and J. Sanabria, “On Independence Neutrosophic Random Variables,” Neutrosophic Sets and Systems, vol. 47, 2021.

    [34] C. Granados, “New Notions On Neutrosophic Random Variables,” Neutrosophic Sets and Systems, vol. 47, 2021.

    [35] M. B. Zeina and M. Abobala, “A novel approach of neutrosophic continuous probability distributions using AH-isometry with applications in medicine,” Cognitive Intelligence with Neutrosophic Statistics in Bioinformatics, pp. 267–286, Jan. 2023, doi: 10.1016/B978-0-323-99456-9.00014-3.

    [36] M. B. Zeina and Y. Karmouta, “Introduction to Neutrosophic Stochastic Processes,” Neutrosophic Sets and Systems, vol. 54, 2023.

    [37] A. Astambli, M. B. Zeina, and Y. Karmouta, “Algebraic Approach to Neutrosophic Confidence Intervals,” Journal of Neutrosophic and Fuzzy Systems, vol. 5, no. 2, pp. 08–22, 2023, doi: 10.54216/JNFS.050201.

    [38] M. B. Zeina, M. Abobala, A. Hatip, S. Broumi, and S. Jalal Mosa, “Algebraic Approach to Literal Neutrosophic Kumaraswamy Probability Distribution,” Neutrosophic Sets and Systems, vol. 54, pp. 124–138, 2023.

    [39] A. Astambli, M. B. Zeina, and Y. Karmouta, “On Some Estimation Methods of Neutrosophic Continuous Probability Distributions Using One-Dimensional AH-Isometry,” Neutrosophic Sets and Systems, vol. 53, 2023.

    [40] S. Alias and D. Mohamad, “A Review on Neutrosophic Set and Its Development,” 2018.

    [41] M. Aslam and M. Albassam, “Presenting post hoc multiple comparison tests under neutrosophic statistics,” J King Saud Univ Sci, vol. 32, no. 6, 2020, doi: 10.1016/j.jksus.2020.06.008.

    [42] M. Aslam, “Neutrosophic analysis of variance: application to university students,” Complex and Intelligent Systems, vol. 5, no. 4, 2019, doi: 10.1007/s40747-019-0107-2.

    [43] F. Smarandache, “Symbolic Neutrosophic Theory,” ArXiv, 2015, doi: 10.5281/ZENODO.32078.

    [44] R. A. K. Sherwani, T. Arshad, M. Albassam, M. Aslam, and S. Abbas, “Neutrosophic entropy measures for the Weibull distribution: theory and applications,” Complex and Intelligent Systems, vol. 7, no. 6, 2021, doi: 10.1007/s40747-021-00501-y.

    [45] K. F. Alhasan, A. A. Salama, and F. Smarandache, “Introduction to neutrosophic reliability theory,” International Journal of Neutrosophic Science, vol. 15, no. 1, 2021, doi: 10.5281/zenodo.5033829.

    [46] H. Rashad and M. Mohamed, “Neutrosophic Theory and Its Application in Various Queueing Models: Case Studies,” Neutrosophic Sets and Systems, vol. 42, 2021, doi: 10.5281/zenodo.4711516.

    [47] R. A. K. Sherwani, M. Naeem, M. Aslam, M. A. Raza, M. Abid, and S. Abbas, “Neutrosophic Beta Distribution with Properties and Applications,” Neutrosophic Sets and Systems, vol. 41, 2021.

    [48] M. B. Zeina, “Neutrosophic M/M/1, M/M/c, M/M/1/b Queueing Systems,” Research Journal of Aleppo University, vol. 140, 2020, Accessed: Feb. 21, 2023. [Online]. Available: https://www.researchgate.net/publication/343382302_Neutrosophic_MM1_MMc_MM1b_Queueing_Systems

    [49] M. B. Zeina, “Linguistic Single Valued Neutrosophic M/M/1 Queue,” Research Journal of Aleppo University, vol. 144, 2021, Accessed: Feb. 21, 2023. [Online]. Available: https://www.researchgate.net/publication/348945390_Linguistic_Single_Valued_Neutrosophic_MM1_Queue

    [50] W. Q. Duan, Z. Khan, M. Gulistan, and A. Khurshid, “Neutrosophic Exponential Distribution: Modeling and Applications for Complex Data Analysis,” Complexity, vol. 2021, 2021, doi: 10.1155/2021/5970613.

    [51] Z. Khan, M. Gulistan, N. Kausar, and C. Park, “Neutrosophic Rayleigh Model with Some Basic Characteristics and Engineering Applications,” IEEE Access, vol. 9, pp. 71277–71283, 2021, doi: 10.1109/ACCESS.2021.3078150.

    [52] R. A. K. Sherwani, M. Aslam, M. A. Raza, M. Farooq, M. Abid, and M. Tahir, “Neutrosophic Normal Probability Distribution—A Spine of Parametric Neutrosophic Statistical Tests: Properties and Applications,” Neutrosophic Operational Research, pp. 153–169, 2021, doi: 10.1007/978-3-030-57197-9_8.

    [53] M. B. Zeina, “Erlang Service Queueing Model with Neutrosophic Parameters,” International Journal of Neutrosophic Science, vol. 6, no. 2, pp. 106–112, 2020, doi: 10.54216/IJNS.060202.

    [54] M. B. Zeina, “Neutrosophic Event-Based Queueing Model,” International Journal of Neutrosophic Science, vol. 6, no. 1, 2020, doi: 10.5281/zenodo.3840771.

    [55] M. Miari, M. T. Anan, and M. B. Zeina, “Neutrosophic Two Way ANOVA,” International Journal of Neutrosophic Science, vol. 18, no. 3, 2022, doi: 10.54216/IJNS.180306.

    [56] Ben Othman, K., Von Shtawzen, O., Khaldi, A., and Ali, R., "On The Concept Of Symbolic 7-Plithogenic Real Matrices", Pure Mathematics For Theoretical Computer Science, Vol.1, 2023.

    [57] Ben Othman, K., Von Shtawzen, O., Khaldi, A., and Ali, R., "On The Symbolic 8-Plithogenic Matrices", Pure Mathematics For Theoretical Computer Science, Vol.1, 2023.

    Cite This Article As :
    Bisher, Mohamed. , Altounji, Nizar. , Abobala, Mohammad. , Karmouta, Yasin. Introduction to Symbolic 2-Plithogenic Probability Theory. Galoitica: Journal of Mathematical Structures and Applications, vol. , no. , 2023, pp. 18-30. DOI: https://doi.org/10.54216/GJMSA.070202
    Bisher, M. Altounji, N. Abobala, M. Karmouta, Y. (2023). Introduction to Symbolic 2-Plithogenic Probability Theory. Galoitica: Journal of Mathematical Structures and Applications, (), 18-30. DOI: https://doi.org/10.54216/GJMSA.070202
    Bisher, Mohamed. Altounji, Nizar. Abobala, Mohammad. Karmouta, Yasin. Introduction to Symbolic 2-Plithogenic Probability Theory. Galoitica: Journal of Mathematical Structures and Applications , no. (2023): 18-30. DOI: https://doi.org/10.54216/GJMSA.070202
    Bisher, M. , Altounji, N. , Abobala, M. , Karmouta, Y. (2023) . Introduction to Symbolic 2-Plithogenic Probability Theory. Galoitica: Journal of Mathematical Structures and Applications , () , 18-30 . DOI: https://doi.org/10.54216/GJMSA.070202
    Bisher M. , Altounji N. , Abobala M. , Karmouta Y. [2023]. Introduction to Symbolic 2-Plithogenic Probability Theory. Galoitica: Journal of Mathematical Structures and Applications. (): 18-30. DOI: https://doi.org/10.54216/GJMSA.070202
    Bisher, M. Altounji, N. Abobala, M. Karmouta, Y. "Introduction to Symbolic 2-Plithogenic Probability Theory," Galoitica: Journal of Mathematical Structures and Applications, vol. , no. , pp. 18-30, 2023. DOI: https://doi.org/10.54216/GJMSA.070202