Galoitica: Journal of Mathematical Structures and Applications

Journal DOI

https://doi.org/10.54216/GJSMA

Submit Your Paper

2834-5568ISSN (Online)

Volume 7 , Issue 1 , PP: 43-50, 2023 | Cite this article as | XML | Html | PDF | Full Length Article

Introduction to Neutrosophic Bayes Estimation Theory

Nizar Altounji 1 * , Mohamed Bisher Zeina 2 , Moustafa Mazhar Ranneh 3

  • 1 Department of Mathematical Statistics, Faculty of Science, University of Aleppo, Aleppo, Syria. - (nizar.altounji.94@hotmail.com)
  • 2 Department of Mathematical Statistics, Faculty of Science, University of Aleppo, Aleppo, Syria. - (bisher.zeina@gmail.com)
  • 3 Department of Mathematical Statistics, Faculty of Science, University of Aleppo, Aleppo, Syria. - (moustafa.ranneh26@gmail.com)
  • Doi: https://doi.org/10.54216/GJMSA.070105

    Received: February 27, 2022 Revised: June 18, 2023 Accepted: August 16, 2023
    Abstract

    This research presents the concept of neutrosophic Bayesian estimation defining the neutrosophic loss function, neutrosophic risk function, neutrosophic posterior risk function and neutrosophic maximum a posteriori estimator. Minimization of the neutrosophic posterior risk of the estimator is also discussed. An algebraic isomorphism is used to simplify equations solving. As an application of the presented theorems, a sample drawn from a neutrosophic gamma distribution with a conjugate prior is discussed and studied and the parameter of the formulated distribution is successfully estimated using neutrosophic quadratic loss function which results an estimator that equals the posterior mean.

    Keywords :

    Neutrosophic , Loss Function , Risk Function , Conditional Density Function , Conditional Expectation , Posterior Risk Function , Maximum a Posteriori Estimator.

    References

    [1]        F. Smarandache et al., “Introduction to neutrosophy and neutrosophic environment,” Neutrosophic Set in Medical Image Analysis, pp. 3–29, 2019, doi: 10.1016/B978-0-12-818148-5.00001-1.

    [2]        F. Smarandache, “Introduction to Neutrosophic Measure, Neutrosophic Integral, and Neutrosophic Probability,” ArXiv, 2013.

    [3]        M. B. Zeina and A. Hatip, “Neutrosophic Random Variables,” Neutrosophic Sets and Systems, vol. 39, 2021, doi: 10.5281/zenodo.4444987.

    [4]        M. Mullai, K. Sangeetha, R. Surya, G. M. Kumar, R. Jeyabalan, and S. Broumi, “A Single Valued neutrosophic Inventory Model with Neutrosophic Random Variable,” International Journal of Neutrosophic Science, vol. 1, no. 2, 2020, doi: 10.5281/zenodo.3679510.

    [5]        R. Alhabib, M. M. Ranna, H. Farah, and A. Salama, “Some Neutrosophic Probability Distributions,” Neutrosophic Sets and Systems, vol. 22, pp. 30–38, 2018.

    [6]        F. Smarandache, “Symbolic Neutrosophic Theory,” ArXiv, 2015, doi: 10.5281/ZENODO.32078.

    [7]        F. Smarandache, “Introduction to Neutrosophic Statistics,” Branch Mathematics and Statistics Faculty and Staff Publications, Jan. 2014, Accessed: Feb. 21, 2023. [Online]. Available: https://digitalrepository.unm.edu/math_fsp/33

    [8]        M. Abobala and A. Hatip, “An Algebraic Approach to Neutrosophic Euclidean Geometry,” Neutrosophic Sets and Systems, vol. 43, 2021.

    [9]        F. Smarandache, “(T, I, F)-Neutrosophic Structures,” Applied Mechanics and Materials, vol. 811, 2015, doi: 10.4028/www.scientific.net/amm.811.104.

    [10]      H. Y. Zhang, J. Q. Wang, and X. H. Chen, “Interval neutrosophic sets and their application in multicriteria decision making problems,” The Scientific World Journal, vol. 2014, 2014, doi: 10.1155/2014/645953.

    [11]      M. B. Zeina, O. Zeitouny, F. Masri, F. Kadoura, and S. Broumi, “Operations on single-valued trapezoidal neutrosophic numbers using (α, β, γ)-cuts ‘maple package,’” International Journal of Neutrosophic Science, vol. 15, no. 2, 2021, doi: 10.54216/IJNS.150205.

    [12]      M. Abobala and M. B. Zeina, “A Study of Neutrosophic Real Analysis by Using the One-Dimensional Geometric AH-Isometry,” Galoitica: Journal of Mathematical Structures and Applications, vol. 3, no. 1, pp. 18–24, 2023, doi: 10.54216/GJMSA.030103).

    [13]      A. Astambli, M. B. Zeina, and Y. Karmouta, “On Some Estimation Methods of Neutrosophic Continuous Probability Distributions Using One-Dimensional AH-Isometry,” Neutrosophic Sets and Systems, vol. 53, 2023.

    [14]      A. Astambli, M. B. Zeina, and Y. Karmouta, “Algebraic Approach to Neutrosophic Confidence Intervals,” Journal of Neutrosophic and Fuzzy Systems, vol. 5, no. 2, pp. 08–22, 2023, doi: 10.54216/JNFS.050201.

    [15]      M. B. Zeina and M. Abobala, “A novel approach of neutrosophic continuous probability distributions using AH-isometry with applications in medicine,” Cognitive Intelligence with Neutrosophic Statistics in Bioinformatics, pp. 267–286, Jan. 2023, doi: 10.1016/B978-0-323-99456-9.00014-3.

    [16]      M. Abobala, M. B. Ziena, R. I. Doewes, and Z. Hussein, “The Representation of Refined Neutrosophic Matrices By Refined Neutrosophic Linear Functions,” International Journal of Neutrosophic Science, vol. 19, no. 1, 2022, doi: 10.54216/IJNS.190131.

    [17]      M. Miari, M. T. Anan, and M. B. Zeina, “Neutrosophic Two Way ANOVA,” International Journal of Neutrosophic Science, vol. 18, no. 3, 2022, doi: 10.54216/IJNS.180306.

    [18]      R. A. K. Sherwani, M. Aslam, M. A. Raza, M. Farooq, M. Abid, and M. Tahir, “Neutrosophic Normal Probability Distribution—A Spine of Parametric Neutrosophic Statistical Tests: Properties and Applications,” Neutrosophic Operational Research, pp. 153–169, 2021, doi: 10.1007/978-3-030-57197-9_8.

    [19]      M. Abobala, “On the Representation of Neutrosophic Matrices by Neutrosophic Linear Transformations,” Journal of Mathematics, vol. 2021, 2021, doi: 10.1155/2021/5591576.

    [20]      M. B. Zeina and Y. Karmouta, “Introduction to Neutrosophic Stochastic Processes,” Neutrosophic Sets and Systems, vol. 54, 2023.

    [21]      K. F. Alhasan, A. A. Salama, and F. Smarandache, “Introduction to neutrosophic reliability theory,” International Journal of Neutrosophic Science, vol. 15, no. 1, 2021, doi: 10.5281/zenodo.5033829.

    [22]      M. Bisher Zeina and M. Abobala, “On The Refined Neutrosophic Real Analysis Based on Refined Neutrosophic Algebraic AH-Isometry,” Neutrosophic Sets and Systems, vol. 54, 2023.

    [23]      M. B. Zeina, “Neutrosophic Event-Based Queueing Model,” International Journal of Neutrosophic Science, vol. 6, no. 1, 2020, doi: 10.5281/zenodo.3840771.

    [24]      M. Akram, Shumaiza, and F. Smarandache, “Decision-making with bipolar neutrosophic TOPSIS and bipolar neutrosophic ELECTRE-I,” Axioms, vol. 7, no. 2, 2018, doi: 10.3390/axioms7020033.

    [25]      F. Smarandache, “Neutrosophic theory and its applications,” Brussels, vol. I, 2014.

    [26]      R. A. K. Sherwani, M. Naeem, M. Aslam, M. A. Raza, M. Abid, and S. Abbas, “Neutrosophic Beta Distribution with Properties and Applications,” Neutrosophic Sets and Systems, vol. 41, 2021.

    [27]      F. Smarandache, “Indeterminacy in neutrosophic theories and their applications,” International Journal of Neutrosophic Science, vol. 15, no. 2, 2021, doi: 10.5281/zenodo.5295819.

    [28]      M. B. Zeina, “Erlang Service Queueing Model with Neutrosophic Parameters,” International Journal of Neutrosophic Science, vol. 6, no. 2, pp. 106–112, 2020, doi: 10.54216/IJNS.060202.

    [29]      M. B. Zeina, “Neutrosophic M/M/1, M/M/c, M/M/1/b Queueing Systems,” Research Journal of Aleppo University, vol. 140, 2020, Accessed: Feb. 21, 2023. [Online]. Available: https://www.researchgate.net/publication/343382302_Neutrosophic_MM1_MMc_MM1b_Queueing_Systems

    [30]      M. B. Zeina, “Linguistic Single Valued Neutrosophic M/M/1 Queue,” Research Journal of Aleppo University, vol. 144, 2021, Accessed: Feb. 21, 2023. [Online]. Available: https://www.researchgate.net/publication/348945390_Linguistic_Single_Valued_Neutrosophic_MM1_Queue

    [31]      M. Xu, R. Yong, and Y. Belayne, “Decision Making Methods with Linguistic Neutrosophic Information: A Review,” Neutrosophic Sets and Systems, vol. 38, 2020, doi: 10.5281/zenodo.4300630.

    [32]      M. B. Zeina, M. Abobala, A. Hatip, S. Broumi, and S. Jalal Mosa, “Algebraic Approach to Literal Neutrosophic Kumaraswamy Probability Distribution,” Neutrosophic Sets and Systems, vol. 54, pp. 124–138, 2023.

    [33]      M. Abobala, “On Some Algebraic Properties of n -Refined Neutrosophic Elements and n -Refined Neutrosophic Linear Equations,” Math Probl Eng, vol. 2021, 2021, doi: 10.1155/2021/5573072.

    [34]      M. Miari, M. T. Anan, and M. B. Zeina, “Single Valued Neutrosophic Kruskal-Wallis and Mann Whitney Tests,” Neutrosophic Sets and Systems, vol. 51, 2022, doi: 10.5281/zenodo.7163297.

    [35]      M. Aslam, “Neutrosophic analysis of variance: application to university students,” Complex and Intelligent Systems, vol. 5, no. 4, 2019, doi: 10.1007/s40747-019-0107-2.

    [36]      S. Broumi, M. B. Zeina, M. Lathamaheswari, A. Bakali, and M. Talea, “A Maple Code to Perform Operations on Single Valued Neutrosophic Matrices,” Neutrosophic Sets and Systems, vol. 49, 2022.

    [37]      D. Zhang, Y. Ma, H. Zhao, and X. Yang, “Neutrosophic Clustering Algorithm Based on Sparse Regular Term Constraint,” Complexity, vol. 2021, 2021, doi: 10.1155/2021/6657849.

    [38]      R. A. K. Sherwani, S. Iqbal, S. Abbas, M. Aslam, and A. H. Al-Marshadi, “A New Neutrosophic Negative Binomial Distribution: Properties and Applications,” Journal of Mathematics, vol. 2021, 2021, doi: 10.1155/2021/2788265.

    [39]      Z. Khan, M. Gulistan, N. Kausar, and C. Park, “Neutrosophic Rayleigh Model with Some Basic Characteristics and Engineering Applications,” IEEE Access, vol. 9, pp. 71277–71283, 2021, doi: 10.1109/ACCESS.2021.3078150.

    [40]      D. Nagarajan and J. Kavikumar, “Single-Valued and Interval-Valued Neutrosophic Hidden Markov Model,” Math Probl Eng, vol. 2022, 2022, doi: 10.1155/2022/5323530.

    [41]      R. A. K. Sherwani, H. Shakeel, M. Saleem, W. B. Awan, M. Aslam, and M. Farooq, “A new neutrosophic sign test: An application to COVID-19 data,” PLoS One, vol. 16, no. 8 August, Aug. 2021, doi: 10.1371/JOURNAL.PONE.0255671.

    [42]      Z. Khan, A. Al-Bossly, M. M. A. Almazah, and F. S. Alduais, “On Statistical Development of Neutrosophic Gamma Distribution with Applications to Complex Data Analysis,” Complexity, vol. 2021, 2021, doi: 10.1155/2021/3701236.

    [43]      M. B. Zeina, N. Altounji, M. Abobala, and Y. Karmouta, “Introduction to Symbolic 2-Plithogenic Probability Theory,” Galoitica: Journal of Mathematical Structures and Applications, vol. 7, no. 1, 2023.

    [44]      N. M. Taffach and A. Hatip, “A Review on Symbolic 2-Plithogenic Algebraic Structures,” Galoitica: Journal of Mathematical Structures and Applications, vol. 5, no. 1, pp. 08–16, 2023, doi: 10.54216/GJMSA.050101.

    [45]      R. Ali and Z. Hasan, “An Introduction To The Symbolic 3-Plithogenic Modules,” Galoitica: Journal of Mathematical Structures and Applications, vol. 6, no. 1, pp. 13–17, 2023, doi: 10.54216/GJMSA.060102.

    [46]      R. Ali and Z. Hasan, “An Introduction to The Symbolic 3-Plithogenic Vector Spaces,” Galoitica: Journal of Mathematical Structures and Applications, vol. 6, no. 1, pp. 08–12, 2023, doi: 10.54216/GJMSA.060101.

    [47]      N. M. Taffach and A. Hatip, “A Brief Review on The Symbolic 2-Plithogenic Number Theory and Algebraic Equations,” Galoitica: Journal of Mathematical Structures and Applications, vol. 5, no. 1, pp. 36–44, 2023, doi: 10.54216/GJMSA.050103.

    [48]      M. Abdel-Basset, R. Mohamed, A. E. N. H. Zaied, and F. Smarandache, “A hybrid plithogenic decision-making approach with quality function deployment for selecting supply chain sustainability metrics,” Symmetry (Basel), vol. 11, no. 7, Jul. 2019, doi: 10.3390/SYM11070903.

    Cite This Article As :
    Altounji, Nizar. , Bisher, Mohamed. , Mazhar, Moustafa. Introduction to Neutrosophic Bayes Estimation Theory. Galoitica: Journal of Mathematical Structures and Applications, vol. , no. , 2023, pp. 43-50. DOI: https://doi.org/10.54216/GJMSA.070105
    Altounji, N. Bisher, M. Mazhar, M. (2023). Introduction to Neutrosophic Bayes Estimation Theory. Galoitica: Journal of Mathematical Structures and Applications, (), 43-50. DOI: https://doi.org/10.54216/GJMSA.070105
    Altounji, Nizar. Bisher, Mohamed. Mazhar, Moustafa. Introduction to Neutrosophic Bayes Estimation Theory. Galoitica: Journal of Mathematical Structures and Applications , no. (2023): 43-50. DOI: https://doi.org/10.54216/GJMSA.070105
    Altounji, N. , Bisher, M. , Mazhar, M. (2023) . Introduction to Neutrosophic Bayes Estimation Theory. Galoitica: Journal of Mathematical Structures and Applications , () , 43-50 . DOI: https://doi.org/10.54216/GJMSA.070105
    Altounji N. , Bisher M. , Mazhar M. [2023]. Introduction to Neutrosophic Bayes Estimation Theory. Galoitica: Journal of Mathematical Structures and Applications. (): 43-50. DOI: https://doi.org/10.54216/GJMSA.070105
    Altounji, N. Bisher, M. Mazhar, M. "Introduction to Neutrosophic Bayes Estimation Theory," Galoitica: Journal of Mathematical Structures and Applications, vol. , no. , pp. 43-50, 2023. DOI: https://doi.org/10.54216/GJMSA.070105