Volume 6 , Issue 1 , PP: 35-46, 2023 | Cite this article as | XML | Html | PDF | Full Length Article
Murtada Ali Maqdisi 1 , Taher Ahmed Jubbori 2
Doi: https://doi.org/10.54216/GJMSA.060105
This paper considers Hyers-Ulam-Rassias Stability for Linear and Semi-Linear Systems of Differential Equations. We establish sufficient conditions of Hyers-Ulam-Rassias stability and Hyers-Ulam stability for linear and semi-linear systems of differential equations. Illustrative examples will be given.
Differential equation , semi-linear system , Hyers-Ulam-Rassias Stability.
[1] Alsina, C. Ger, R. (1998). on some inequalities and stability results related to the exponential function, Journal of Inequalities and Application. 2 373-380.
[2] Gavruta, P. A (1994). Generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. And Appl. 184(3). 431-436.
[3] Gavruta, P. S. Jung, & Li, Y. (2011). Hyers-Ulam Stability for Second-Order Linear Differential Equations with Boundary Conditions, EJDE. 80:1-7. http://ejde.math.txstate.edu/ Volumes/2011/ 80/gavruta.pdf.
[4] Gordji, M. E. Cho, Y. J. Ghaemi, M. B. & Alizadeh, B. (2011). Stability of the exact second order partial differential equations', J. Inequal. Appl. Article ID: 306275.
[5] Hyers, D. H. (1941). On the stability of the linear functional equation, Proceedings of the National Academy of Sciences of the United States of America, 27. 222- 224.
[6] Jun, K. W. Lee, Y. H. (2004). A generalization of the Hyers-Ulam-Rassias stability of the Pexiderized quadratic equations, Journal of Mathematical Analysis and Applications, 297(1) pp. 70-86.
[7] Jung, S. M. (1996). On the Hyers-Ulam-Rassias stability of approximately additive mappings', J. Math. Anal. Appl. 204. 221-226.
[8] Jung, S. M. (2001). Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, USA.
[9] Jung, S. M. (2006). Hyers-Ulam stability of a system of first order linear differential equations with constant coefficients, Journal of Mathematical Analysis and Applications', 320(2). 59-561.
[10] Li, Y. (2010), Hyers-Ulam Stability of Linear Differential Equations', Thai J. Math. 8(2) pp 215-219.
[11] Li, Y. & Shen, Y. (2009). Hyers-Ulam Stability of Nonhomogeneous Linear Differential Equations of Second Order, Internat. J. Math. Math. Sci. 7, Article ID 576852.
[12] Lungu, N. & Craciun, C. (2012). Ulam-Hyers-Rassias Stability of a Hyperbolic Partial Differential Equation, ISRN Math. Anal Article ID 609754, 10. doi:10.5402/2012/609754.
[13] Miura, T. Takahasi S. E & Choda, H. (2001). On the Hyers-Ulam stability of real continuous function valued differentiable map, Tokyo J. Math, 4 467- 476.
[14] Miura, T. Miyajima S. & Takahasi. S.-E. (2007). A characterization of Hyers- Ulam stability of first order linear differential operators', J. Math. Anal. Appl. 286. 136-146.
[15] Obloza, M. (1993). Hyers stability of the linear differential equation, Rocznik Nauk. Dydakt. Prace Mat., 13259-270.
[16] Obloza, M. Connections between Hyers and Lyapunov stability of the ordinary differential equations', Rocznik Nauk. Dydakt. Prace Mat., No. 14, 141-146.
[17] Okunuga, S. A. Ehigie, J. O. Sofoluwe, A. B. (2012). Treatment of Lane- Emden Type Equations via Second Derivative Backward Differentiation Formula using Boundary Value Technique, // Proceedings of the World Congress on Engineering, I., 224.
[18] Park, C. G. (2002). On the stability of the linear mapping in Banach modules', J. Math. Anal. Appl. 275. 711-720.
[19] Park, C. G. (2005). Homomorphisms between Poisson JC*-algebras, Bull. Braz. Math. Soc. 36(1). 79--97.
[20] Park, C. G. Cho, Y.-S. & Han M. (2007). ' Functional inequalities associated with Jordan-von Neumann type additive functional equations, J. Inequal. Appl. 13, Article ID 41820.
[21] Popa D. & Rus, I. (2011). On the Hyers-Ulam stability of the linear differential equation, Journal of Mathematical Analysis and Applications, 381(2). 530—537.
[22] Popa D. & Rus, I. (2012). Hyers-Ulam stability of the linear differential operator with nonconstant coefficients, Applied Mathematics and Computation; 219(4). 1562—1568.
[23] Rassias, T. M. (1978). On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72(2). 297—300.
[24] Rus, I. (2009). Remarks on Ulam stability of the operatorial equations, Fixed Point Theory, 10(2). 305—320.
[25] Samoilenko, A. M. Krivosheya, S. A. & Perestyuk, N. A. (1989). Differential Equations: Examples and Problems, Vysshaya Shkola, Moscow.
[26] Rus, I. (2009). Ulam stability of ordinary differential equations, Studia Universitatis Babes- Bolyai: Mathematica, 5(4). 125-133.
[27] Takahasi, E. Miura T. & Miyajima, S. (2002). On the Hyers-Ulam stability of the Banach space-valued differential equation Y'=λY, Bull. Korean Math. Soc. 39 (2). 309--315.
[28] Ulam, S.M. (1964). Problems in Modern Mathematics, John Wiley & Sons, New York, USA, Science edition.
[29] Wang, G. Zhou, M. & Sun, L. (2008). 'Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett. 21, 1024-1028.
[30] Plaat, O. (1971). Ordinary Differential Equations, Holden-Day Series in Mathematics, Holden-Day, San Francisco.