Galoitica: Journal of Mathematical Structures and Applications

Journal DOI

https://doi.org/10.54216/GJSMA

Submit Your Paper

2834-5568ISSN (Online)

Volume 6 , Issue 1 , PP: 35-46, 2023 | Cite this article as | XML | Html | PDF | Full Length Article

On Some Results About the Hyers-Ulam-Rassias Stability for Semi-Linear Systems of Differential Equations

Murtada Ali Maqdisi 1 , Taher Ahmed Jubbori 2

  • 1 College of Pharmacy, AL-Farahidi University, Baghdad, Iraq - (maqdisidrmurtada@uoalfarahidi.edu.iq)
  • 2 Computer Techniques Engineering Department, Al-Mustaqbal University, Babil, Iraq - (taherajubbori@mustaqbal-college.edu.iq)
  • Doi: https://doi.org/10.54216/GJMSA.060105

    Received: December 18, 2022 Revised: April 04, 2023 Accepted: May 06, 2023
    Abstract

    This paper considers Hyers-Ulam-Rassias Stability for Linear and Semi-Linear Systems of Differential Equations. We establish sufficient conditions of Hyers-Ulam-Rassias stability and Hyers-Ulam stability for linear and semi-linear systems of differential equations. Illustrative examples will be given.

    Keywords :

    Differential equation , semi-linear system , Hyers-Ulam-Rassias Stability.

    References

    [1]   Alsina, C. Ger, R. (1998). on some inequalities and stability results related to the exponential function, Journal of Inequalities and Application. 2 373-380.

    [2]   Gavruta, P. A (1994). Generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. And Appl. 184(3). 431-436.

    [3]   Gavruta, P. S. Jung, & Li, Y. (2011). Hyers-Ulam Stability for Second-Order Linear Differential Equations with Boundary Conditions, EJDE. 80:1-7. http://ejde.math.txstate.edu/ Volumes/2011/ 80/gavruta.pdf.

    [4]   Gordji, M. E. Cho, Y. J. Ghaemi, M. B. & Alizadeh, B. (2011). Stability of the exact second order partial differential equations', J. Inequal. Appl. Article ID: 306275.

    [5]   Hyers, D. H. (1941). On the stability of the linear functional equation, Proceedings of the National Academy of Sciences of the United States of America, 27. 222- 224.

    [6]   Jun, K. W. Lee, Y. H. (2004). A generalization of the Hyers-Ulam-Rassias stability of the Pexiderized quadratic equations, Journal of Mathematical Analysis and Applications, 297(1) pp. 70-86.

    [7]   Jung, S. M. (1996). On the Hyers-Ulam-Rassias stability of approximately additive mappings', J. Math. Anal. Appl. 204. 221-226.

    [8]   Jung, S. M. (2001). Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, USA.

    [9]   Jung, S. M. (2006). Hyers-Ulam stability of a system of first order linear differential equations with constant coefficients, Journal of Mathematical Analysis and Applications', 320(2). 59-561.

    [10] Li, Y. (2010), Hyers-Ulam Stability of Linear Differential Equations', Thai J. Math. 8(2) pp 215-219.

    [11] Li, Y. & Shen, Y. (2009). Hyers-Ulam Stability of Nonhomogeneous Linear Differential Equations of Second Order, Internat. J. Math. Math. Sci. 7, Article ID 576852.

    [12] Lungu, N. & Craciun, C. (2012). Ulam-Hyers-Rassias Stability of a Hyperbolic Partial Differential Equation, ISRN Math. Anal Article ID 609754, 10. doi:10.5402/2012/609754.

    [13] Miura, T. Takahasi S. E & Choda, H. (2001). On the Hyers-Ulam stability of real continuous function valued differentiable map, Tokyo J. Math, 4 467- 476.

    [14] Miura, T. Miyajima S. & Takahasi. S.-E. (2007). A characterization of Hyers- Ulam stability of first order linear differential operators', J. Math. Anal. Appl. 286. 136-146.

    [15] Obloza, M. (1993). Hyers stability of the linear differential equation, Rocznik Nauk. Dydakt. Prace Mat., 13259-270.

    [16] Obloza, M. Connections between Hyers and Lyapunov stability of the ordinary differential equations', Rocznik Nauk. Dydakt. Prace Mat., No. 14, 141-146.

    [17] Okunuga, S. A. Ehigie, J. O. Sofoluwe, A. B. (2012). Treatment of Lane- Emden Type Equations via Second Derivative Backward Differentiation Formula using Boundary Value Technique, // Proceedings of the World Congress on Engineering, I., 224.

    [18] Park, C. G. (2002). On the stability of the linear mapping in Banach modules', J. Math. Anal. Appl. 275. 711-720.

    [19] Park, C. G. (2005). Homomorphisms between Poisson JC*-algebras, Bull. Braz. Math. Soc. 36(1). 79--97.

    [20] Park, C. G. Cho, Y.-S. & Han M. (2007). ' Functional inequalities associated with Jordan-von Neumann type additive functional equations, J. Inequal. Appl. 13, Article ID 41820.

    [21] Popa D. & Rus, I. (2011). On the Hyers-Ulam stability of the linear differential equation, Journal of Mathematical Analysis and Applications, 381(2). 530—537.

    [22] Popa D. & Rus, I. (2012). Hyers-Ulam stability of the linear differential operator with nonconstant coefficients, Applied Mathematics and Computation; 219(4). 1562—1568.

    [23] Rassias, T. M. (1978). On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72(2). 297—300.

    [24] Rus, I. (2009). Remarks on Ulam stability of the operatorial equations, Fixed Point Theory, 10(2). 305—320.

    [25] Samoilenko, A. M. Krivosheya, S. A. & Perestyuk, N. A. (1989). Differential Equations: Examples and Problems, Vysshaya Shkola, Moscow.

    [26] Rus, I. (2009). Ulam stability of ordinary differential equations, Studia Universitatis Babes- Bolyai: Mathematica, 5(4). 125-133.

    [27] Takahasi, E. Miura T. & Miyajima, S. (2002). On the Hyers-Ulam stability of the Banach space-valued differential equation Y'=λY,  Bull. Korean Math. Soc. 39 (2). 309--315.

    [28] Ulam, S.M. (1964). Problems in Modern Mathematics, John Wiley & Sons, New York, USA, Science edition.

    [29] Wang, G. Zhou, M. & Sun, L. (2008). 'Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett. 21, 1024-1028.

    [30] Plaat, O. (1971). Ordinary Differential Equations, Holden-Day Series in Mathematics, Holden-Day, San Francisco.

    Cite This Article As :
    Ali, Murtada. , Ahmed, Taher. On Some Results About the Hyers-Ulam-Rassias Stability for Semi-Linear Systems of Differential Equations. Galoitica: Journal of Mathematical Structures and Applications, vol. , no. , 2023, pp. 35-46. DOI: https://doi.org/10.54216/GJMSA.060105
    Ali, M. Ahmed, T. (2023). On Some Results About the Hyers-Ulam-Rassias Stability for Semi-Linear Systems of Differential Equations. Galoitica: Journal of Mathematical Structures and Applications, (), 35-46. DOI: https://doi.org/10.54216/GJMSA.060105
    Ali, Murtada. Ahmed, Taher. On Some Results About the Hyers-Ulam-Rassias Stability for Semi-Linear Systems of Differential Equations. Galoitica: Journal of Mathematical Structures and Applications , no. (2023): 35-46. DOI: https://doi.org/10.54216/GJMSA.060105
    Ali, M. , Ahmed, T. (2023) . On Some Results About the Hyers-Ulam-Rassias Stability for Semi-Linear Systems of Differential Equations. Galoitica: Journal of Mathematical Structures and Applications , () , 35-46 . DOI: https://doi.org/10.54216/GJMSA.060105
    Ali M. , Ahmed T. [2023]. On Some Results About the Hyers-Ulam-Rassias Stability for Semi-Linear Systems of Differential Equations. Galoitica: Journal of Mathematical Structures and Applications. (): 35-46. DOI: https://doi.org/10.54216/GJMSA.060105
    Ali, M. Ahmed, T. "On Some Results About the Hyers-Ulam-Rassias Stability for Semi-Linear Systems of Differential Equations," Galoitica: Journal of Mathematical Structures and Applications, vol. , no. , pp. 35-46, 2023. DOI: https://doi.org/10.54216/GJMSA.060105