Volume 5 , Issue 1 , PP: 49-55, 2023 | Cite this article as | XML | Html | PDF | Full Length Article
Rama Asad Nadweh 1 *
Doi: https://doi.org/10.54216/GJMSA.050105
In this paper we study Bäcklund transformations (BTs) for Cosgrove’s equation F-XVIII. We use the generalization of Fokas and Ablowitz method to derive BT between F-XVIII and new fourth-order ordinary differential equations of Painlevé type. Moreover we derive auto-BT and give special solutions for F-XVIII.
Cosgrove's equation , Backlund Transformation , Differential equation
[1] Bureau F. 1964: Sur les ´equations diff´erentielles du quatri´eme ordre don’t 1’int´egrale g´en´erale est ´a points critiques fixes, Comptes rendus de l’Acad´emie des Sciences Paris, 258: 38-40.
[2] Chazy J. 1911: Sur les ´equations diff´erentielles du troisi´eme ordre e d’ordre sup´erieur dont 1’int´egrale g´en´erale a ses points critiques fixes Acta Mathematica, 34: 317-385.
[3] Cosgrove C.M.2000: Higher-Order Painlev´e Equations in the Polynomial Class 1, Bureau Symbol P2, Stud .Appl. Math., 104, 1-65.
[4] Cosgrove C.M.2000:Chazy classes IX-XII of third-order differential equations, Stud. Appl. Math., 104, 171-228.
[5] Cosgrove C.M.2000: Higher-order Painlev`e equations in the polynomial class II.Bureau symbol PI, preprint.
[6] Clarkson P.A., Joshi N., and Pickering A.1999: B¨acklund transformations for the second Painlev`e hierarchy: a modified truncation approach , Inverse Problems.,15,175-188.
[7] Exton H.1971: On nonlinear ordinary differential equations with fixed critical points, Rendiconti di Matematica, 4: 385-448.
[8] Fokas A.S. and Ablowitz M.J.1982: Painlev´e test and the first Painlev´e Hierarchy, J. Math. Phys., 23: 2033.
[9] 9.Fordy A.P. and Gibbons J.1980: Some remarkable nonlinear transformations, Phys. Lett. A. 75: 325-325.
[10] Gordoa P.R. and Pickering A. 2001: New integrable equations of fourth order and higher degree related to Cosgrove’s equation, J. Math. Phys. 42: 1697-1707.
[11] Gordoa P.R.2001:B¨acklund transformations for the second member of the first Painlev´e hierarchy, Phys. Lett. A. 287: 365-370.
[12] Gordoa P.R.2003: Obtaining Bäcklund transformations for higher order ordinary differential equations, Proceedings of the X fall Workshop on Geometry and Physics (Publications de la Real Socie dad Matematica Espanola, vol. 4 Madrid, p. 255-264).
[13] Gordoa P.R. and Pickering A.2001: New B¨acklund transformations for the third and fourth Painlev´e equations to equations of second order and higher degree, Phys. Lett. A. 282: 152-156.
[14] Ince E.L.1956: Ordinary Differential Equations, Dover,New york.
[15] Kudryashov N.A.2002: Fouth-order analogies to the Painlev´e equations, J. Phys. A, 35:4617-4632.
[16] Martynov I.P.1973: Differential Equations with Stationary Critical Singularities, Differential Equations, 9: 1368-1376.
[17] Mu˘gan U. and Jrad F.1999:Painlev´e test and the first Painlev´e Hierarchy,J. Phys. A, 32:7933-7952.
[18] Sakka A. and Mu˘gan U.1997: Second-order second degree Painlev´e equations related with Painlev´e I,II,III equations, J. Phys. A., 30: 5159-5177.
[19] Sakka A. and Mu˘gan U.1998: Second-order second-degree Painlev´e equations related to Painlev´e IV,V,VI equations, J. Phys. A., 31: 2471-2490.