Volume 3 , Issue 2 , PP: 36-44, 2023 | Cite this article as | XML | Html | PDF | Full Length Article
H.K. Al-Mahdawi 1 * , Mostafa Abotaleb 2 , Hussein Alkattan 3 , El-Sayed M El-kenawy 4
Doi: https://doi.org/10.54216/GJMSA.030205
In this work, we study the regularization method for solving the Boundary Value Problem (BVP) for heat equation. The discretization method applied with two variables on Volterra integral equation in order to covert the problem into a linear operator equation after applied the separation of variables method to solve the partial differential equation. The regularization way used to obtain the estimate solution by using the Lavrentiev regularization method.
Ill-posed problem , Lavrentiev regularization , Inverse problem , Heat conduction
[1] V. G. Romanov, “An inverse phaseless problem for electrodynamic equations in an anisotropic medium,” in Doklady Mathematics, 2019, vol. 100, no. 2, pp. 496–500.
[2] A. Hasanov and H. Itou, “A priori estimates for the general dynamic Euler–Bernoulli beam equation: Supported and cantilever beams,” Appl. Math. Lett., vol. 87, pp. 141–146, 2019.
[3] G. G. Skorik and V. V. Vasin, “Regularized Newton type method for retrieval of heavy water in atmosphere by IR spectra of the solar light transmission,” Eurasian J. Math. Comput. Appl., vol. 7, no. 2, pp. 79–88, 2019.
[4] A. I. Prilepko, V. L. Kamynin, and A. B. Kostin, “Inverse source problem for parabolic equation with the condition of integral observation in time,” J. Inverse Ill-posed Probl., vol. 26, no. 4, pp. 523–539, 2018.
[5] A. M. Denisov, “Existence of a Solution of the Inverse Coefficient Problem for a Quasilinear Hyperbolic Equation,” Comput. Math. Math. Phys., vol. 59, no. 4, pp. 550–558, 2019.
[6] V. P. Tanana, A. I. Sidikova, and A. A. Ershova, “A numerical solution to a problem of crystal energy spectrum determination by the heat capacity dependent on a temperature,” Eurasian J. Math. Comput. Appl., vol. 5, no. 1, pp. 87–94, 2017.
[7] V. P. Tanana, “A comparison of error estimates at a point and on a set when solving ill-posed problems,” J. Inverse Ill-posed Probl., vol. 26, no. 4, pp. 541–550, 2018.
[8] A. G. Yagola, W. Yanfei, I. E. Stepanova, and V. N. Titarenko, “Inverse Problems and Methods of Their Solution,” Appl. to Geophys. (Binom, Moscow, 2014)[in Russ., 2014.
[9] V. N. Tikhonov and V. B. Glasko, “Methods of determining the surfaces temperature of a body,” Zhurnal Vychislitel’noi Mat. i Mat. Fiz., vol. 7, no. 4, pp. 910–914, 1967.
[10] R. J. Knops, “MM Lavrent′ ev, VG Romanov and SP Shishatskiĭ, Ill-posed problems of mathematical physics and analysis,” Bull. New. Ser. Am. Math. Soc., vol. 19, no. 1, pp. 332–337, 1988.
[11] S. I. Kabanikhin, “INVERSE AND ILL-POSED PROBLEMS.,” Sib. Elektron. Mat. Izv., vol. 7, 2010.
[12] V. P. Tanana, “On Reducing an Inverse Boundary-Value Problem to the Synthesis of Two Ill-Posed Problems and Their Solution,” Numer. Anal. Appl., vol. 13, no. 2, pp. 180–192, 2020.
[13] M. M. Lavrent’ev, “On Certain Ill-Posed Problems of Mathematical Physics,” Sib. Div. USSR Acad. Sci. Novosib., 1962.
[14] A. G. Goncharskii, A.V. Leonov, A.S., Yagola, “Finite-Difference Approximation of Linear Ill-Posed Problems,” Zh. Vych. Mat. Mat. Fiz, vol. 14, no. 4, pp. 1022–1027, 1974.
[15] V. K. Ivanov, V. V. Vasin, and T. V.P., Theory of Linear Ill-Posed Problem and Application. Nauok Moscow, 1978.
[16] V. P. Tanana, “Projection methods and finite-difference approximation of linear incorrectly formulated problems,” Sib. Math. J., vol. 16, no. 6, pp. 999–1004, 1975, doi: 10.1007/BF00967398.
[17] V. V. Vasin, “Discrete convergence and finite-dimensional approximation of regularizing algorithms,” USSR Comput. Math. Math. Phys., vol. 19, no. 1, pp. 8–19, 1979, doi: 10.1016/0041-5553(79)90062-4.
[18] V. P. Tanana and A. I. Sidikova, “On Estimating the Error of an Approximate Solution Caused by the Discretization of an Integral Equation of the First Kind,” Proc. Steklov Inst. Math., vol. 299, no. 1, pp. 217–224, 2017, doi: 10.1134/S0081543817090231.
[19] V. P. Tanana, E. Y. Vishnyakov, and A. I. Sidikova, “An approximate solution of a Fredholm integral equation of the first kind by the residual method,” Numer. Anal. Appl., vol. 9, no. 1, pp. 74–81, 2016, doi: 10.1134/S1995423916010080.
[20] B. T. Al-Nuaimi, H. K. Al-Mahdawi, Z. Albadran, H. Alkattan, M. Abotaleb, and E.-S. M. El-kenawy, “Solving of the Inverse Boundary Value Problem for the Heat Conduction Equation in Two Intervals of Time,” Algorithms, vol. 16, no. 1, p. 33, 2023.
[21] L. D. Menikhes and V. P. Tanana, “The finite-dimensional approximation for the Lavrent’ev method,” Sib. Zhurnal Vychislitel’noi Mat., vol. 1, no. 1, pp. 59–66, 1998.
[22] A. I. Sidikova and H. K. Al-Mahdawi, “The solution of inverse boundary problem for the heat exchange for the hollow cylinder,” in AIP Conference Proceedings, 2022, vol. 2398, no. 1, p. 60050.
[23] H. K. I. Al-Mahdawi, M. Abotaleb, H. Alkattan, A.-M. Z. Tareq, A. Badr, and A. Kadi, “Multigrid Method for Solving Inverse Problems for Heat Equation,” Mathematics, vol. 10, no. 15, p. 2802, 2022.
[24] H. K. I. Al-Mahdawi, H. Alkattan, M. Abotaleb, A. Kadi, and E.-S. M. El-kenawy, “Updating the Landweber Iteration Method for Solving Inverse Problems,” Mathematics, vol. 10, no. 15, p. 2798, 2022.
[25] H. K. Al-Mahdawi, A. I. Sidikova, H. Alkattan, M. Abotaleb, A. Kadi, and E.-S. M. El-kenawy, “Parallel Multigrid Method for Solving Inverse Problems,” MethodsX, p. 101887, 2022.
[26] R. Plato, P. Mathé, and B. Hofmann, “Optimal rates for Lavrentiev regularization with adjoint source conditions,” Math. Comput., vol. 87, no. 310, pp. 785–801, 2018.
[27] R. Plato, “The Product Midpoint Rule for Abel-Type Integral Equations of the First Kind with Perturbed Data,” in New Trends in Parameter Identification for Mathematical Models, Springer, 2018, pp. 195–225.
[28] V. B. Glasko, N. I. Kulik, I. N. Shklyarov, and A. N. Tikhonov, “An inverse problem of heat conductivity,” Zhurnal Vychislitel’noi Mat. i Mat. Fiz., vol. 19, no. 3, pp. 768–774, 1979.
[29] A. S. Belonosov and M. A. Shishlenin, “Continuation problem for the parabolic equation with the data on the part of the boundary,” Siber. Electron. Math. Rep., vol. 11, pp. 22–34, 2014.
[30] S. I. Kabanikhin, A. Hasanov, and A. V Penenko, “A gradient descent method for solving an inverse coefficient heat conduction problem,” Numer. Anal. Appl., vol. 1, no. 1, pp. 34–45, 2008.
[31] A. G. Yagola, I. E. Stepanova, Y. Van, and V. N. Titarenko, “Obratnye zadachi i metody ikh resheniya. Prilozheniya k geofizike,” Inverse Probl. Methods their Solut. Appl. to Geophys. Moscow Binom. Lab. znanii, 2014.
[32] S. I. Kabanikhin, O. I. Krivorot’ko, and M. A. Shishlenin, “A numerical method for solving an inverse thermoacoustic problem,” Numer. Anal. Appl., vol. 6, no. 1, pp. 34–39, 2013.
[33] V. P. Tanana, “On the order-optimality of the projection regularization method in solving inverse problems,” Sib. Zhurnal Ind. Mat., vol. 7, no. 2, pp. 117–132, 2004.
[34] J. Gallier, Geometric methods and applications: for computer science and engineering, vol. 38. Springer Science & Business Media, 2011.
[35] V. P. Tanana and A. I. Sidikova, Optimal Methods for Ill-Posed Problems: With Applications to Heat Conduction, vol. 62. Walter de Gruyter GmbH & Co KG, 2018.