Volume 1 , Issue 2 , PP: 08-10, 2022 | Cite this article as | XML | Html | PDF | Full Length Article
Arwa Hajjari 1 *
Doi: https://doi.org/10.54216/GJMSA.010201
The objective of this paper is to estimate the value of∫_(-1)^1〖f(x)/(x-t)^m dx ;m∈N〗 where f is convex from above and ∫_0^δ〖w(f^((m-1) ),x)/x dx<∞; fis bounded in C^((m-1) ) [-1,1].
Improper Integral , Cauchy Principal value , Convex function
[1] CAROTHERS.N. – A short course on Approximation Theory I Bowling Green state University
Math682Smmer 1998.
[2] KORNEUSHYK .N.B .EXat constant in approximation Theory.Nauka.Mosscow .p424 (in Russian)-1987.
[3] Chawla .,M.M.&Jayarajan ,.,Quadrature formolas for Cauchy principal value integrals ,computing ,15,347 -
355(1975).
[4] Das,R.N.&Hota.K.,A derivative free quadraturole for numerical approximations of complex Cauchy
principal value integrals ,Appl.Math.Sci.,69,5533-5540.(2012)
[5] Davis,P,J.&Robinowitz,P., Method of Numerical integration( nd (2 edn , Academic Prress,NY.1984,
[6] Diethelm,K., Gaussian quadrature formulas of the third kind for Cauchy principal value integrals :basic
properties and error estimates ;J.comp.Appl.Math .,65997114(1998)
[7] Hunter ,D.B, Some Gauss type formulae for the evolution of Cauchy principal values ointegrals,Numer Math
.419-4-8(1992)
[8] Milovanovic ,G.v.,Acharya ,B.P.&Pahana.K,I.N.,Some interpalated rule for the approximative evaluation of
complex CPV integrals Rev.Res.,14,89-100(1984)