International Journal of Advances in Applied Computational Intelligence

Journal DOI

https://doi.org/10.54216/IJAACI

Submit Your Paper

2833-5600ISSN (Online)

Volume 1 , Issue 1 , PP: 23-33, 2022 | Cite this article as | XML | Html | PDF | Full Length Article

Predicting the actual use of social media sites among university communicators: using PLS-SEM and ML approaches

Aseel M. Alfaisal 1 * , Aisha Zare 2 , Afrah Alshaafi 3 , Rose Aljanada 4 , Raghad M. Alfaisal 5 , Ghadeer W. Abukhalil 6

  • 1 Department of Languages and Translation, The Applied College, Northern Border University, KSA - (mrs.aseel@gmail.com)
  • 2 Faculty of Engineering and IT, The British University in Dubai, Dubai, UAE - (.........)
  • 3 Faculty of Business and Law, The British University in Dubai, UAE - (21002516@student.buid.ac.ae)
  • 4 Department of Languages and Translation, The Applied College, Northern Border University, KSA - ( sakurarose31@gmail.com)
  • 5 Faculty of Art, Computing and Creative Industries, Universiti Pendidikan Sultan Idris, Malaysia - (raghad.alfaisal81@gmail.com; dodo.44844@gmail.com)
  • 6 Faculty of Arts, Department of English Language and Literature, Yarmouk University, Irbid, Jordan - (dodo.44844@gmail.com)
  • Doi: https://doi.org/10.54216/IJAACI.010102

    Received: January 08, 2022 Accepted: May 17, 2022
    Abstract

    Studies on the acceptance of social media apps are being conducted at an increasing rate. The factors influencing its popularity for learning reasons are still not well understood, though. The goal of this study is to create a conceptual model that extends the Technology Adoption Model (TAM) to account for perceived playfulness to gauge students' acceptance of social media in learning. A total of 623 authenticated questionnaire surveys were obtained from students enrolled at a reputed university in the United Arab Emirates (UAE). Tools such as partial least squares-structural equation modeling (PLS-SEM) and machine learning approaches were obtained to examine the collected data. According to the research findings, significant parameters of students' intention to use social media networks for education include perceived playfulness, perceived usefulness, and perceived ease of use.

    Keywords :

    Social media networks , Acceptance , Technology Acceptance Model , PLS-SEM.

    References

    [1]         S. A. Salloum, M. Al-Emran, A. Monem, and K. Shaalan, “A Survey of Text Mining in Social Media: Facebook and Twitter Perspectives,” Adv. Sci. Technol. Eng. Syst. J., vol. 2, no. 1, pp. 127–133, 2017.

    [2]         S. A. Salloum, M. Al-Emran, A. A. Monem, and K. Shaalan, “A survey of text mining in social media: facebook and twitter perspectives,” Adv. Sci. Technol. Eng. Syst. J, vol. 2, no. 1, pp. 127–133, 2017.

    [3]         M. Habes, M. Alghizzawi, R. Khalaf, S. A. Salloum, and M. A. Ghani, “The Relationship between Social Media and Academic Performance: Facebook Perspective,” Int. J. Inf. Technol. Lang. Stud., vol. 2, no. 1, 2018.

    [4]         M. Alshurideh, S. A. Salloum, B. Al Kurdi, and M. Al-Emran, “Factors affecting the social networks acceptance: An empirical study using PLS-SEM approach,” in ACM International Conference Proceeding Series, 2019, vol. Part F1479.

    [5]         A. Y. Zainal, H. Yousuf, and S. A. Salloum, “Mining social media text: extracting knowledge from Facebook,” in Joint European-US Workshop on Applications of Invariance in Computer Vision, 2020, pp. 762–772.

    [6]         S. A. Salloum, C. Mhamdi, M. Al-Emran, and K. Shaalan, “Analysis and Classification of Arabic Newspapers’ Facebook Pages using Text Mining Techniques,” Int. J. Inf. Technol. Lang. Stud., vol. 1, no. 2, pp. 8–17, 2017.

    [7]         M. Alghizzawi, S. A. Salloum, and M. Habes, “The role of social media in tourism marketing in Jordan,” Int. J. Inf. Technol. Lang. Stud., vol. 2, no. 3, 2018.

    [8]         M. Alghizzawi, M. Habes, S. A. Salloum, M. A. Ghani, C. Mhamdi, and K. Shaalan, “The effect of social media usage on students’e-learning acceptance in higher education: A case study from the United Arab Emirates,” Int. J. Inf. Technol. Lang. Stud., vol. 3, no. 3, 2019.

    [9]         C. Mhamdi, M. Al-Emran, and S. A. Salloum, Text mining and analytics: A case study from news channels posts on Facebook, vol. 740. 2018.

    [10]       M. Habes, S. A. Salloum, M. Alghizzawi, and C. Mhamdi, The Relation Between Social Media and Students’ Academic Performance in Jordan: YouTube Perspective, vol. 1058. 2020.

    [11]       S. A. Salloum, M. Al-Emran, M. Habes, M. Alghizzawi, M. A. Ghani, and K. Shaalan, “What Impacts the Acceptance of E-learning Through Social Media? An Empirical Study,” Recent Adv. Technol. Accept. Model. Theor., pp. 419–431, 2021.

    [12]       S. Al-Skaf, E. Youssef, M. Habes, K. Alhumaid, and S. A. Salloum, “The Acceptance of Social Media Sites: An Empirical Study Using PLS-SEM and ML Approaches,” in Advanced Machine Learning Technologies and Applications: Proceedings of AMLTA 2021, 2021, pp. 548–558.

    [13]       N. Al-Qaysi and M. Al-Emran, “Code-switching Usage in Social Media : A Case Study from Oman,” Int. J. Inf. Technol. Lang. Stud., vol. 1, no. 1, pp. 25–38, 2017.

    [14]       S. A. Salloum, M. Al-Emran, S. Abdallah, and K. Shaalan, “Analyzing the Arab Gulf Newspapers Using Text Mining Techniques,” in International Conference on Advanced Intelligent Systems and Informatics, 2017, pp. 396–405.

    [15]       S. A. Salloum, C. Mhamdi, B. Al Kurdi, and K. Shaalan, “Factors affecting the Adoption and Meaningful Use of Social Media: A Structural Equation Modeling Approach,” Int. J. Inf. Technol. Lang. Stud., vol. 2, no. 3, 2018.

    [16]       S. A. Salloum, M. Al-Emran, and K. Shaalan, “Mining Text in News Channels: A Case Study from Facebook,” Int. J. Inf. Technol. Lang. Stud., vol. 1, no. 1, pp. 1–9, 2017.

    [17]       S. A. Salloum, M. Al-Emran, M. Habes, M. Alghizzawi, M. A. Ghani, and K. Shaalan, “Understanding the Impact of Social Media Practices on E-Learning Systems Acceptance,” Adv. Intell. Syst. Comput., vol. 1058, no. August 2020, pp. 360–369, 2020.

    [18]       S. A. Salloum, W. Maqableh, C. Mhamdi, B. Al Kurdi, and K. Shaalan, “Studying the Social Media Adoption by university students in the United Arab Emirates,” Int. J. Inf. Technol. Lang. Stud., vol. 2, no. 3, 2018.

    [19]       R. Al-Maroof et al., “The acceptance of social media video for knowledge acquisition, sharing and application: A com-parative study among YouTube users and TikTok Users’ for medical purposes,” Int. J. Data Netw. Sci., vol. 5, no. 3, pp. 197–214, 2021.

    [20]       S. A. Salloum, N. M. N. AlAhbabi, M. Habes, A. Aburayya, and I. Akour, “Predicting the Intention to Use Social Media Sites: A Hybrid SEM-Machine Learning Approach,” in Advanced Machine Learning Technologies and Applications: Proceedings of AMLTA 2021, 2021, pp. 324–334.

    [21]       R. S. Al-Maroof, S. A. Salloum, A. Q. M. AlHamadand, and K. Shaalan, A Unified Model for the Use and Acceptance of Stickers in Social Media Messaging, vol. 1058. 2020.

    [22]       A. Aburayya and S. A. Salloum, “The Effects of Subjective Norm on the Intention to Use Social Media Networks: An Exploratory Study Using PLS-SEM and Machine Learning Approach.”

    [23]       F. A. Almazrouei, M. Alshurideh, B. Al Kurdi, and S. A. Salloum, Social Media Impact on Business: A Systematic Review, vol. 1261 AISC. 2021.

    [24]       A. Almansoori, M. Alshamsi, S. Abdallah, and S. A. Salloum, “Analysis of Cybercrime on Social Media Platforms and Its Challenges,” in The International Conference on Artificial Intelligence and Computer Vision, 2021, pp. 615–625.

    [25]       L. Razmerita, G. Wren, and L. C. Jain, Innovations in Knowledge Management: The impact of social media, semantic web and cloud computing. 2016.

    [26]       R. S. Al-Maroof, S. A. Salloum, A. Q. M. AlHamadand, and K. Shaalan, “A Unified Model for the Use and Acceptance of Stickers in Social Media Messaging,” in International Conference on Advanced Intelligent Systems and Informatics, 2019, pp. 370–381.

    [27]       J. Wiid, M. C. Cant, and C. Nell, “Open distance learning students’ Perception of the use of social media networking systems as an educational tool,” Int. Bus. Econ. Res. J., vol. 12, no. 8, p. 867, 2013.

    [28]       N. Al-Qaysi, N. Mohamad-Nordin, and M. Al-Emran, “A systematic review of social media acceptance from the perspective of educational and information systems theories and models,” J. Educ. Comput. Res., vol. 57, no. 8, pp. 2085–2109, 2020.

    [29]       I. A. Zolkepli and Y. Kamarulzaman, “Social media adoption: The role of media needs and innovation characteristics,” Comput. Human Behav., vol. 43, pp. 189–209, 2015.

    [30]       J. N. Lieberman, Playfulness: Its relationship to imagination and creativity. Academic Press, 2014.

    [31]       C.-C. Chang, S.-W. Hung, M.-J. Cheng, and C.-Y. Wu, “Exploring the intention to continue using social networking sites: The case of Facebook,” Technol. Forecast. Soc. Change, vol. 95, pp. 48–56, 2015.

    [32]       A. Padilla-MeléNdez, A. R. Del Aguila-Obra, and A. Garrido-Moreno, “Perceived playfulness, gender differences and technology acceptance model in a blended learning scenario,” Comput. Educ., vol. 63, pp. 306–317, 2013.

    [33]       F. D. Davis, “Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology,” MIS Q., vol. 13, no. 3, pp. 319–340, 1989.

    [34]       D. Z. Dumpit and C. J. Fernandez, “Analysis of the use of social media in Higher Education Institutions (HEIs) using the Technology Acceptance Model,” Int. J. Educ. Technol. High. Educ., vol. 14, no. 1, p. 5, 2017.

    [35]       I. Akour, M. Alshurideh, B. Al Kurdi, A. Al Ali, and S. Salloum, “Using machine learning algorithms to predict people’s intention to use mobile learning platforms during the COVID-19 pandemic: Machine learning approach,” JMIR Med. Educ., vol. 7, no. 1, 2021.

    [36]       S. Alshurideh, M., Al Kurdi, B., Abumari, A., and Salloum, “Pharmaceutical Promotion Tools Effect on Physician’s Adoption of Medicine Prescribing: Evidence from Jordan,” Mod. Appl. Sci., vol. 12, no. 11, pp. 210–222, 2018.

    [37]       S. A. Salloum, R. Khan, and K. Shaalan, “A Survey of Semantic Analysis Approaches,” in Joint European-US Workshop on Applications of Invariance in Computer Vision, 2020, pp. 61–70.

    [38]       S. A. Salloum, M. Al-Emran, and K. Shaalan, “A Survey of Lexical Functional Grammar in the Arabic Context,” Int. J. Com. Net. Tech, vol. 4, no. 3, 2016.

    [39]       C. M. Ringle, S. Wende, and J.-M. Becker, “SmartPLS 3. Bönningstedt: SmartPLS.” 2015.

    [40]       S. F. S. Alhashmi, S. A. Salloum, and C. Mhamdi, “Implementing Artificial Intelligence in the United Arab Emirates Healthcare Sector: An Extended Technology Acceptance Model,” Int. J. Inf. Technol. Lang. Stud., vol. 3, no. 3, 2019.

    [41]       S. A. Salloum and K. Shaalan, “Adoption of E-Book for University Students,” in International Conference on Advanced Intelligent Systems and Informatics, 2018, pp. 481–494.

    [42]       M. T. Alshurideh, B. Al Kurdi, and S. A. Salloum, “The moderation effect of gender on accepting electronic payment technology: a study on United Arab Emirates consumers,” Rev. Int. Bus. Strateg., 2021.

    [43]       A. Aburayya et al., “An Empirical Examination of the Effect of TQM Practices on Hospital Service Quality: An Assessment Study in UAE Hospitals.”

    [44]       R. Saeed Al-Maroof, K. Alhumaid, and S. Salloum, “The Continuous Intention to Use E-Learning, from Two Different Perspectives,” Educ. Sci., vol. 11, no. 1, p. 6, 2020.

    [45]       M. Alghizzawi, M. Habes, and S. A. Salloum, The Relationship Between Digital Media and Marketing Medical Tourism Destinations in Jordan: Facebook Perspective, vol. 1058. 2020.

    [46]       R. S. Al-Maroof, S. A. Salloum, A. Q. AlHamadand, and K. Shaalan, “Understanding an Extension Technology Acceptance Model of Google Translation: A Multi-Cultural Study in United Arab Emirates,” Int. J. Interact. Mob. Technol., vol. 14, no. 03, pp. 157–178, 2020.

    [47]       D. Barclay, C. Higgins, and R. Thompson, The Partial Least Squares (pls) Approach to Casual Modeling: Personal Computer Adoption Ans Use as an Illustration. 1995.

    [48]       S. S. A. Al-Maroof R.S., “An Integrated Model of Continuous Intention to Use of Google Classroom.,” Al-Emran M., Shaalan K., Hassanien A. Recent Adv. Intell. Syst. Smart Appl. Stud. Syst. Decis. Control. vol 295. Springer, Cham, 2021.

    [49]       R. S. Al-Maroof, M. T. Alshurideh, S. A. Salloum, A. Q. M. AlHamad, and T. Gaber, “Acceptance of Google Meet during the spread of Coronavirus by Arab university students,” in Informatics, 2021, vol. 8, no. 2, p. 24.

    [50]       H. Yousuf, A. Y. Zainal, M. Alshurideh, and S. A. Salloum, “Artificial Intelligence Models in Power System Analysis,” in Artificial Intelligence for Sustainable Development: Theory, Practice and Future Applications, Springer, pp. 231–242.

    [51]       M. AlShamsi, S. A. Salloum, M. Alshurideh, and S. Abdallah, “Artificial Intelligence and Blockchain for Transparency in Governance,” in Artificial Intelligence for Sustainable Development: Theory, Practice and Future Applications, Springer, pp. 219–230.

    [52]       M. Habes, M. Alghizzawi, S. A. Salloum, and C. Mhamdi, “Effects of Facebook Personal News Sharing on Building Social Capital in Jordanian Universities,” in Recent Advances in Intelligent Systems and Smart Applications, Springer, 2020, pp. 653–670.

    [53]       K. Alameeri, M. Alshurideh, B. Al Kurdi, and S. A. Salloum, The Effect of Work Environment Happiness on Employee Leadership, vol. 1261 AISC. 2021.

    [54]       I. Arpaci, “A hybrid modeling approach for predicting the educational use of mobile cloud computing services in higher education,” Comput. Human Behav., vol. 90, pp. 181–187, 2019.

    [55]       J. F. Hair Jr, G. T. M. Hult, C. Ringle, and M. Sarstedt, A primer on partial least squares structural equation modeling (PLS-SEM). Sage Publications, 2016.

    [56]       J. F. Hair, W. C. Black Jr, B. J. Babin, and R. E. Anderson, “Multivariate Data Analysis”, Pearson Prentice Hall, USA,” 2010.

    [57]       C. Fornell and D. F. Larcker, “Evaluating Structural Equation Models With Unobservable Variables and Measurement Error,” J. Mark. Res., vol. 18, no. 1, pp. 39–50, 1981.

    [58]       J. Henseler, C. M. Ringle, and M. Sarstedt, “A new criterion for assessing discriminant validity in variance-based structural equation modeling,” J. Acad. Mark. Sci., vol. 43, no. 1, pp. 115–135, 2015.

    [59]       F. D. Davis, R. P. Bagozzi, and P. R. Warshaw, “Extrinsic and intrinsic motivation to use computers in the workplace,” J. Appl. Soc. Psychol., vol. 22, no. 14, pp. 1111–1132, 1992.

    [60]       S.-H. Liu, H.-L. Liao, and C.-J. Peng, “Applying the technology acceptance model and flow theory to online e-learning users’ acceptance behavior,” E-learning, vol. 4, no. H6, p. H8, 2005.

    [61]       E. Frank et al., “Weka-a machine learning workbench for data mining,” in Data mining and knowledge discovery handbook, Springer, 2009, pp. 1269–1277.

    [62]       M. Al-Emran, V. Mezhuyev, and A. Kamaludin, “PLS-SEM in Information Systems Research: A Comprehensive Methodological Reference,” in 4th International Conference on Advanced Intelligent Systems and Informatics (AISI 2018), 2018, pp. 644–653.

    Cite This Article As :
    M., Aseel. , Zare, Aisha. , Alshaafi, Afrah. , Aljanada, Rose. , M., Raghad. , W., Ghadeer. Predicting the actual use of social media sites among university communicators: using PLS-SEM and ML approaches. International Journal of Advances in Applied Computational Intelligence, vol. , no. , 2022, pp. 23-33. DOI: https://doi.org/10.54216/IJAACI.010102
    M., A. Zare, A. Alshaafi, A. Aljanada, R. M., R. W., G. (2022). Predicting the actual use of social media sites among university communicators: using PLS-SEM and ML approaches. International Journal of Advances in Applied Computational Intelligence, (), 23-33. DOI: https://doi.org/10.54216/IJAACI.010102
    M., Aseel. Zare, Aisha. Alshaafi, Afrah. Aljanada, Rose. M., Raghad. W., Ghadeer. Predicting the actual use of social media sites among university communicators: using PLS-SEM and ML approaches. International Journal of Advances in Applied Computational Intelligence , no. (2022): 23-33. DOI: https://doi.org/10.54216/IJAACI.010102
    M., A. , Zare, A. , Alshaafi, A. , Aljanada, R. , M., R. , W., G. (2022) . Predicting the actual use of social media sites among university communicators: using PLS-SEM and ML approaches. International Journal of Advances in Applied Computational Intelligence , () , 23-33 . DOI: https://doi.org/10.54216/IJAACI.010102
    M. A. , Zare A. , Alshaafi A. , Aljanada R. , M. R. , W. G. [2022]. Predicting the actual use of social media sites among university communicators: using PLS-SEM and ML approaches. International Journal of Advances in Applied Computational Intelligence. (): 23-33. DOI: https://doi.org/10.54216/IJAACI.010102
    M., A. Zare, A. Alshaafi, A. Aljanada, R. M., R. W., G. "Predicting the actual use of social media sites among university communicators: using PLS-SEM and ML approaches," International Journal of Advances in Applied Computational Intelligence, vol. , no. , pp. 23-33, 2022. DOI: https://doi.org/10.54216/IJAACI.010102