International Journal of BIM and Engineering Science

Journal DOI

https://doi.org/10.54216/IJBES

Submit Your Paper

2571-1075ISSN (Online)

Volume 4 , Issue 2 , PP: 26-32, 2021 | Cite this article as | XML | Html | PDF | Full Length Article

Effect of needle diameters on the diameter of electrospun PVDF nanofibers

Bilal Zaarour 1 * , Nizar Mayhoub 2

  • 1 Textile Industries Mechanical Engineering and Techniques Department, Faculty of Mechanical and Electrical Engineering, Damascus University, Damascus, Syria - (bz@sia-sy.net)
  • 2 Syrian International Academy, Damascus, Syria - (bz@sia-sy.net)
  • Doi: https://doi.org/10.54216/IJBES.040201

    Abstract

    Electrospinning is a technique that generates nanofibers via an electrically charged jet of polymer melt or polymer solution. The significance of this method lies in the tiniest diameter of fibers that can be produced because nanofibers provide more performance advantages in various fields and area as their diameters decrease. Different parameters of electrospinning (solution parameters, process parameters, and ambient parameters) play a vital role in determining the diameter of electrospun nanofibers. In this work, the relationship between the needle diameter and diameter of electrospun poly (vinylidene fluoride) (PVDF) nanofibers is investigated. The results show that there is a positive relationship between the needle diameter and the diameter of electrospun PVDF nanofibers.

    Keywords :

    Electrospinning- PVDF &ndash , nanofibers- needle diameter- fiber diameter

    References

    Ko FK and Wan Y. Introduction to nanofiber materials. Cambridge University Press, 2014.

    2.            Greiner A and Wendorff JH. Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angewandte Chemie International Edition 2007; 46: 5670-5703.

    3.            Bhardwaj N and Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnology advances 2010; 28: 325-347.

    4.            Jiang S, Helfricht N, Papastavrou G, et al. LowDensity SelfAssembled Poly (NIsopropyl Acrylamide) Sponges with Ultrahigh and Extremely Fast Water Uptake and Release. Macromolecular rapid communications 2018; 39: 1700838-1700845.

    5.            Jiang S, Chen Y, Duan G, et al. Electrospun nanofiber reinforced composites: a review. Polymer Chemistry 2018; 9: 2685-2720.

    6.            Zaarour B, Zhang W, Zhu L, et al. Maneuvering surface structures of polyvinylidene fluoride nanofibers by controlling solvent systems and polymer concentration. Textile Research Journal 2019; 89: 2406-2422.

    7.            Daoud WA. Self-cleaning materials and surfaces: a nanotechnology approach. 2013.

    8.            Podgórski A, Bałazy A and Gradoń L. Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters. Chemical Engineering Science 2006; 61: 6804-6815.

    9.            Zhu M, Han J, Wang F, et al. Electrospun nanofibers membranes for effective air filtration. Macromolecular Materials and Engineering 2017; 302: 1600353-1600379.

    10.          Mu H, Li C, Bai J, et al. In situ synthesis of Cu/CNFs composite catalyst by electrospun nanofibers wrapped copper chloride and applied for Ullmann coupling reaction. Journal of Molecular Structure 2018; 1165: 90-100.

    11.          Pagliaro M, Ciriminna R, Yusuf M, et al. Application of nanocellulose composites in the environmental engineering as a catalyst, flocculants, and energy storages: A review. Journal of Composites and Compounds 2021; 3: 114-128.

    12.          Zaarour B, Zhu L, Huang C, et al. A review on piezoelectric fibers and nanowires for energy harvesting. Journal of Industrial Textiles 2019: 1528083719870197.

    13.          Guan X, Xu B, Wu M, et al. Breathable, washable and wearable woven-structured triboelectric nanogenerators utilizing electrospun nanofibers for biomechanical energy harvesting and self-powered sensing. Nano Energy 2021; 80: 105549.

    14.          Zaarour B, Zhu L, Huang C, et al. A mini review on the generation of crimped ultrathin fibers via electrospinning: Materials, strategies, and applications. Polymers for Advanced Technologies 2020; n/a. DOI: 10.1002/pat.4876.

    15.          Ma X, Wu G, Dai F, et al. Chitosan/polydopamine layer by layer self-assembled silk fibroin nanofibers for biomedical applications. Carbohydrate Polymers 2021; 251: 117058.

    16.          Yang B, Myung NV and Tran TT. 1D metal oxide semiconductor materials for chemiresistive gas sensors: a review. Advanced Electronic Materials 2021; 7: 2100271.

    17.          Halicka K and Cabaj J. Electrospun Nanofibers for Sensing and Biosensing Applications—A Review. International Journal of Molecular Sciences 2021; 22: 6357.

    18.          Zaarour B and et al. Maneuvering surface structures of polyvinylidene fluoride nanofibers by controlling solvent systems and polymer concentration. Text Res J 2019; 89: 2406.

    19.          Jacobs V, Anandjiwala RD and Maaza M. The influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers. Journal of applied polymer science 2010; 115: 3130-3136.

    20.          Zaarour B, Zhu L and Jin X. Maneuvering the secondary surface morphology of electrospun poly (vinylidene fluoride) nanofibers by controlling the processing parameters. Materials Research Express 2019.

    21.          Mohammad Khanlou H, Chin Ang B, Talebian S, et al. Electrospinning of polymethyl methacrylate nanofibers: optimization of processing parameters using the Taguchi design of experiments. Textile Research Journal 2015; 85: 356-368.

    22.          Zaarour B, Zhu L, Huang C, et al. Controlling the Secondary Surface Morphology of Electrospun PVDF Nanofibers by Regulating the Solvent and Relative Humidity. Nanoscale Research Letters 2018; 13: 285-296.

    23.          Shahabadi SMS, Kheradmand A, Montazeri V, et al. Effects of process and ambient parameters on diameter and morphology of electrospun polyacrylonitrile nanofibers. Polymer Science Series A 2015; 57: 155-167.

    24.          Trevino JE, Mohan S, Salinas AE, et al. Piezoelectric properties of PVDFconjugated polymer nanofibers. Journal of Applied Polymer Science 2021; 138: 50665.

    25.          Yousry YM, Yao K, Chen S, et al. Mechanisms for enhancing polarization orientation and piezoelectric parameters of PVDF nanofibers. Advanced Electronic Materials 2018; 4: 1700562.

    26.          Cozza ES, Monticelli O, Marsano E, et al. On the electrospinning of PVDF: influence of the experimental conditions on the nanofiber properties. Polymer International 2013; 62: 41-48.

    27.          Zaarour B, Zhu L, Huang C, et al. Enhanced piezoelectric properties of randomly oriented and aligned electrospun PVDF fibers by regulating the surface morphology. Journal of Applied Polymer Science 2019; 136: 47049-47056.

    28.          Zhu L, Zaarour B and Jin X. Unexpectedly high oil cleanup capacity of electrospun poly (vinylidene fluoride) fiber webs induced by spindle porous bowl like beads. Soft Materials 2019: 1-8.

    29.          Wu J, Ding Y, Wang J, et al. Facile fabrication of nanofiber-and micro/nanosphere-coordinated PVDF membrane with ultrahigh permeability of viscous water-in-oil emulsions. Journal of Materials Chemistry A 2018; 6: 7014-7020.

    30.          Zaarour B, Tina H, Zhu L, et al. Branched nanofibers with tiny diameters for air filtration via one-step electrospinning. Journal of Industrial Textiles 2020; 0: 1528083720923773. DOI: 10.1177/1528083720923773.

    31.          Leung WW-F and Sun Q. Charged PVDF multilayer nanofiber filter in filtering simulated airborne novel coronavirus (COVID-19) using ambient nano-aerosols. Separation and purification technology 2020; 245: 116887.

    32.          Kizildag N, Beceren Y, Kazanci M, et al. Effect of needle diameter on diameter of electropsun silk fibroin nanofibers. In: RMUTP International Conference: Textiles and Fashion, Bangkok, Thailand 2012, Citeseer.

    33.          Abunahel BM, Azman NZN and Jamil M. Effect of Needle Diameter on the Morphological Structure of Electrospun n-Bi2O3/Epoxy-PVA Nanofiber Mats. Chem Mater Eng 2018; 12: 296-299.

    Cite This Article As :
    Zaarour, Bilal. , Mayhoub, Nizar. Effect of needle diameters on the diameter of electrospun PVDF nanofibers. International Journal of BIM and Engineering Science, vol. , no. , 2021, pp. 26-32. DOI: https://doi.org/10.54216/IJBES.040201
    Zaarour, B. Mayhoub, N. (2021). Effect of needle diameters on the diameter of electrospun PVDF nanofibers. International Journal of BIM and Engineering Science, (), 26-32. DOI: https://doi.org/10.54216/IJBES.040201
    Zaarour, Bilal. Mayhoub, Nizar. Effect of needle diameters on the diameter of electrospun PVDF nanofibers. International Journal of BIM and Engineering Science , no. (2021): 26-32. DOI: https://doi.org/10.54216/IJBES.040201
    Zaarour, B. , Mayhoub, N. (2021) . Effect of needle diameters on the diameter of electrospun PVDF nanofibers. International Journal of BIM and Engineering Science , () , 26-32 . DOI: https://doi.org/10.54216/IJBES.040201
    Zaarour B. , Mayhoub N. [2021]. Effect of needle diameters on the diameter of electrospun PVDF nanofibers. International Journal of BIM and Engineering Science. (): 26-32. DOI: https://doi.org/10.54216/IJBES.040201
    Zaarour, B. Mayhoub, N. "Effect of needle diameters on the diameter of electrospun PVDF nanofibers," International Journal of BIM and Engineering Science, vol. , no. , pp. 26-32, 2021. DOI: https://doi.org/10.54216/IJBES.040201