Pure Mathematics for Theoretical Computer Science

Journal DOI

https://doi.org/10.54216/PMTCS

Submit Your Paper

2995-3162ISSN (Online)

Volume 5 , Issue 1 , PP: 12-20, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

LS-Extending Fuzzy Modules

Hassan K. Marhon 1 *

  • 1 Ministry of Education, Resafa, Iraq - (hassanmath316@gmail.com)
  • Doi: https://doi.org/10.54216/PMTCS.050102

    Received: November 17, 2024 Revised: January 03, 2025 Accepted: February 05, 2025
    Abstract

    The main aim of this paper is extend the notion of S-extending fz-modules into LS-extending fz-modules and study this new notion. This lead us introduce and study other notions such as: purely semisimple, purely extending and purely y-extending fz-modules. Moreover, the relationships LS-extending fz-module with the various types.

    Keywords :

    LS-extending fz-module , Pure fz-sumodule , CS-fzmodules

    References

    [1]       H. H. Abbas and Sh. N. Al-aeashi, “A fuzzy Semi-essential submodule of A fuzzy Module,” J. of Kufa for Math. and Compute, vol. 1, no. 5, pp. 31-37, 2012.

    [2]       M. A. Ahmed, M. R. Abbas, and N. R. Adeeb, “Almost Semi-extending Modules,” vol. 63, no. 7, pp. 3111-3119, 2022.

    [3]       M. A. Ahmed, M. R. Abbas, and N. R. Adeeb, “Semi-extending Modules,” International J. of Advanced Scientific and Technical Research, vol. 6, no. 5, pp. 36-46, 2015.

    [4]       B. H. Al-Bahraany, “Modules with the pure intersection property,” Ph.D. Thesis, College of Science, University of Baghdad, 2000.

    [5]       B. H. Al-Bahraany, “On Purely y-extending Modules,” Iraq J. of Sci., vol. 54, no. 3, pp. 672-675, 2013.

    [6]       M. O. Behboodi, A. S. Karamzadeh, and H. Koohy, “Modules Whose Certain Submodules are Prime,” Vietnam Journal of Math., vol. 32, no. 3, pp. 303-317, 2004.

    [7]       S. Baupradist, B. Chemat, and R. Chinram, “The Properties Of uniform Fuzzy Modules and Semi-uniform Fuzzy Modules,” vol. 28, no. 2, pp. 133-146, 2022.

    [8]       K. Goodearl, “Ring Theory, Nonsingular Ring and Modules,” Marcel Dekker, New York, 1976.

    [9]       R. H. Jari, “Prime Fuzzy Submodules and Prime Fuzzy Modules,” M.Sc. Thesis, University of Baghdad, 2001.

    [10]    I. M. A. Hadi and M. A. Hamel, “Cancellation and Weakly Cancellation Fuzzy Modules,” J. of Basrah Researches, vol. 37, no. 4, 2011.

    [11]    M. A. Hami, “Fuzzy regular F-modules,” M.Sc. Thesis, University of Baghdad, 2002.

    [12]    R. Kumar, “Fuzzy Semi-primary Ideals of Rings,” F-sets and Systems, vol. 42, pp. 263-272, 1991.

    [13]    H. K. Marhoon, “Fuzzy Closed Submodules and Fuzzy W-closed Submodules with the some of Their Generalization,” Ph.D. Thesis, University of Baghdad, 2020.

    [14]    H. K. Marhoon and M. A. Hamel, “Fuzzy Topological Modules,” Journal of Mathematical Sciences, vol. 45, no. 3, pp. 215-225, 2022.

    [15]    H. K. Marhoon, “S-extending Fuzzy Modules,” Central Asian Journal of Mathematical Theory and Computer Science, vol. 6, no. 3, pp. 150-157, 2025.

    [16]    L. Martinez, “Fuzzy Module Over Fuzzy Rings in Connection with Fuzzy Ideals of Rings,” J. Fuzzy Math., vol. 4, pp. 843-857, 1996.

    [17]    A. A. Qaid, “Some Results On Fuzzy Modules,” M.Sc. Thesis, University of Baghdad, 1991.

    [18]    S. B. Semeen, “Chained Fuzzy Modules,” Ibn Al-Haitham J. for Pure and Appl. Sci., vol. 23, no. 2, 2010.

    [19]    F. D. Shyaa, “A study of Modules Related With T-Semisimple Modules,” Ph.D. Thesis, College of Science, University of Baghdad, 2018.

    [20]    Z. Yue, “Prime L-Fuzzy ideals and Primary L-Fuzzy ideals,” Fuzzy Sets and Systems, vol. 27, pp. 345-350, 1988.

    [21]    L. A. Zadeh, “Fuzzy Sets,” Information and Control, vol. 8, pp. 338-353, 1965.

    [22]    M. M. Zahedi, “On L-Fuzzy Residual Quotient Module and P. Primary Submodule,” Fuzzy Sets and Systems, vol. 51, pp. 333-344, 1992.

    Cite This Article As :
    K., Hassan. LS-Extending Fuzzy Modules. Pure Mathematics for Theoretical Computer Science, vol. , no. , 2025, pp. 12-20. DOI: https://doi.org/10.54216/PMTCS.050102
    K., H. (2025). LS-Extending Fuzzy Modules. Pure Mathematics for Theoretical Computer Science, (), 12-20. DOI: https://doi.org/10.54216/PMTCS.050102
    K., Hassan. LS-Extending Fuzzy Modules. Pure Mathematics for Theoretical Computer Science , no. (2025): 12-20. DOI: https://doi.org/10.54216/PMTCS.050102
    K., H. (2025) . LS-Extending Fuzzy Modules. Pure Mathematics for Theoretical Computer Science , () , 12-20 . DOI: https://doi.org/10.54216/PMTCS.050102
    K. H. [2025]. LS-Extending Fuzzy Modules. Pure Mathematics for Theoretical Computer Science. (): 12-20. DOI: https://doi.org/10.54216/PMTCS.050102
    K., H. "LS-Extending Fuzzy Modules," Pure Mathematics for Theoretical Computer Science, vol. , no. , pp. 12-20, 2025. DOI: https://doi.org/10.54216/PMTCS.050102