Volume 5 , Issue 1 , PP: 01-11, 2025 | Cite this article as | XML | Html | PDF | Full Length Article
Mohammed Mhmood Mohammed 1 *
Doi: https://doi.org/10.54216/PMTCS.050101
In this paper, we introduce a class of weighted Orlicz spaces in the context of double coset spaces related to locally compact hypergroups in some way, which one can study that either these spaces are convolution algebras.
Weighted Orlicz , Double Coset Spaces
[1] M. M. Rao and Z. D. Ren, “Theory of Orlicz spaces,” 1991.
[2] I. Akbarbaglu and S. Maghsoudi, “Banach-Orlicz algebras on a locally compact group,” Mediterranean Journal of Mathematics, vol. 10, no. 4, pp. 1937–1947, 2013.
[3] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis. Vol. II: Structure and Analysis on Locally Compact Groups; Analysis on Locally Compact Abelian Groups. New York, NY, USA: Springer, 1970.
[4] H. Hudzik, A. Kamiska, and J. Musielak, “On some Banach algebras given by a modular,” in Alfred Haar Memorial Conference, Budapest, Colloquia Mathematica Societatis J anos Bolyai, vol. 49, North Holland, Amsterdam, 1987, pp. 445–463.
[5] E. Kaniuth, A Course in Commutative Banach Algebras, vol. 246. New York, NY, USA: Springer, 2009.
[6] M. A. Krasnosel’Skii and Y. B. Rutickii, “Convex Functions and Orlicz Spaces,” Groningen, The Netherlands: P. Noordhoff LTD, 1961.
[7] Y. N. Kuznetsova, “Weighted L p-algebras on groups,” Functional Analysis and Its Applications, vol. 40, pp. 234–236, 2006.
[8] Y. N. Kuznetsova, “Invariant Weighted Algebras ℒ pw (G),” Mathematical Notes, vol. 84, pp. 529–537, 2008.
[9] A. Osancliol and S. Öztop, “Weighted Orlicz algebras on locally compact groups,” Journal of the Australian Mathematical Society, vol. 99, no. 3, pp. 399–414, 2015.
[10] S. Öztop and S. M. Tabatabaie, “Weighted Orlicz algebras on hypergroups,” Filomat, vol. 34, no. 9, pp. 2991–3002, 2020.
[11] W. R. Bloom and H. Heyer, Harmonic Analysis of Probability Measures on Hypergroups, vol. 20. Berlin, Germany: Walter de Gruyter, 2011.
[12] R. I. Jewett, “Spaces with an abstract convolution of measures,” Advances in Mathematics, vol. 18, no. 1, pp. 1–101, 1975.