Galoitica: Journal of Mathematical Structures and Applications

Journal DOI

https://doi.org/10.54216/GJSMA

Submit Your Paper

2834-5568ISSN (Online)

Volume 2 , Issue 2 , PP: 14-17, 2022 | Cite this article as | XML | Html | PDF | Full Length Article

On Some Results about Schrodinger-Hermite Equation

Mehmet Celik 1 *

  • 1 Department Of Mathematics, Gaziantep University, Gaziantep, Turkey - (mathcelik@gmail.com)
  • Doi: https://doi.org/10.54216/GJMSA.020202

    Received: March 13, 2022 Accepted: October 09, 2022
    Abstract

    This work is dedicated to study the equation of Schrodinger-Hermite on some well-known spaces as L_2 (R^n ) by using Hermite operator H=-∆+|x|^2.

    Keywords :

    Hermite operator , Schrodinger equation , Hermite function.

    References

    [1 ] BONGIOANNI, B. ;ROGERS, K. M. Regularity of the Schrödinger equation for the harmonics

    oscillator. Arkiv . Math .(49) ,2011,pp.217-238.

    [ 2 ] D'ANCONA , P. ; PIERFELICE , V. ; RICCI , F. On the wave equation associated to the Hermite

    and the twisted Laplacian. J. Fourier Anal. And Appl. (2010), Vol. 16, pp. 294-310.

    [ 3 ] IBRAHIM , I. On eigenfunction expansions of the Hermite differential operator on ℝ .Int . Trans.

    spec. Funct. Vol (13) ,2002 ,pp.555-574.

    [ 4 ] KESAVAN , S. Topics in Functional Analysis and Applications.Wiley Eastern limited , new

    Delhi,1989.267P.

    [ 5 ] NANDAKUMAEAN , A. K. ; RATNAKUMAR , P. K. Schrödinger equation and the oscillatory

    semigroup for the Hermite operator.

    [ 7 ] NARAYNAN ,E.K. ; THANGAVELU,S. On the equisummability of Hermite and Fourier

    Expansions.Proc .Indian Acad. Sci. (Math. Sci. ) vol. 111. No. 1 , February 2001. pp 45 – 106 .

    [ 8 ] ROE, J. Elliptic Operators, Topology and Asymptotic Methods, second eddition. Longman,

    London 1998.207P.

    [ 9 ] SAMUEL, S. ; HOLLAND, J. Applied Analysis by the Hilbert Space Method: An Introduction to

    the Wave, Heat, and Schrödinger Equations.Dover Publications , New York 2007.

    [10 ] SEN , M . : POWERS , J. M. Lecture Notes on Mathematical Methods .University of Notre Dame

    , Indiana , USA , 2012 .502P.

    [11 ] SIMON , B. :Schrödinger operators in the twentieth century .J . Math . phys . vol 41(6),

    2000,pp.3523 -3555.

    [12 ] SJöGREN ,P.;TORREA, J.L.On the boundary convergence of solutions to the Hermite

    Schrödinger equation .

    [13 ] TRIEBEL , H. Higher Analysis . J. A. Parth , Liepzig , 1993 .473P.

    [14 ] BREZIS, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer,

    Berlin 2011 . 614P.

    [15 ] KAPLAN, W. Advanced Calculus, Fifth Edition.Publishing House of Electronics Industry 2010

    .754P.

    Cite This Article As :
    Celik, Mehmet. On Some Results about Schrodinger-Hermite Equation. Galoitica: Journal of Mathematical Structures and Applications, vol. , no. , 2022, pp. 14-17. DOI: https://doi.org/10.54216/GJMSA.020202
    Celik, M. (2022). On Some Results about Schrodinger-Hermite Equation. Galoitica: Journal of Mathematical Structures and Applications, (), 14-17. DOI: https://doi.org/10.54216/GJMSA.020202
    Celik, Mehmet. On Some Results about Schrodinger-Hermite Equation. Galoitica: Journal of Mathematical Structures and Applications , no. (2022): 14-17. DOI: https://doi.org/10.54216/GJMSA.020202
    Celik, M. (2022) . On Some Results about Schrodinger-Hermite Equation. Galoitica: Journal of Mathematical Structures and Applications , () , 14-17 . DOI: https://doi.org/10.54216/GJMSA.020202
    Celik M. [2022]. On Some Results about Schrodinger-Hermite Equation. Galoitica: Journal of Mathematical Structures and Applications. (): 14-17. DOI: https://doi.org/10.54216/GJMSA.020202
    Celik, M. "On Some Results about Schrodinger-Hermite Equation," Galoitica: Journal of Mathematical Structures and Applications, vol. , no. , pp. 14-17, 2022. DOI: https://doi.org/10.54216/GJMSA.020202