Volume 2 , Issue 2 , PP: 14-17, 2022 | Cite this article as | XML | Html | PDF | Full Length Article
Mehmet Celik 1 *
Doi: https://doi.org/10.54216/GJMSA.020202
This work is dedicated to study the equation of Schrodinger-Hermite on some well-known spaces as L_2 (R^n ) by using Hermite operator H=-∆+|x|^2.
Hermite operator , Schrodinger equation , Hermite function.
[1 ] BONGIOANNI, B. ;ROGERS, K. M. Regularity of the Schrödinger equation for the harmonics
oscillator. Arkiv . Math .(49) ,2011,pp.217-238.
[ 2 ] D'ANCONA , P. ; PIERFELICE , V. ; RICCI , F. On the wave equation associated to the Hermite
and the twisted Laplacian. J. Fourier Anal. And Appl. (2010), Vol. 16, pp. 294-310.
[ 3 ] IBRAHIM , I. On eigenfunction expansions of the Hermite differential operator on ℝ .Int . Trans.
spec. Funct. Vol (13) ,2002 ,pp.555-574.
[ 4 ] KESAVAN , S. Topics in Functional Analysis and Applications.Wiley Eastern limited , new
Delhi,1989.267P.
[ 5 ] NANDAKUMAEAN , A. K. ; RATNAKUMAR , P. K. Schrödinger equation and the oscillatory
semigroup for the Hermite operator.
[ 7 ] NARAYNAN ,E.K. ; THANGAVELU,S. On the equisummability of Hermite and Fourier
Expansions.Proc .Indian Acad. Sci. (Math. Sci. ) vol. 111. No. 1 , February 2001. pp 45 – 106 .
[ 8 ] ROE, J. Elliptic Operators, Topology and Asymptotic Methods, second eddition. Longman,
London 1998.207P.
[ 9 ] SAMUEL, S. ; HOLLAND, J. Applied Analysis by the Hilbert Space Method: An Introduction to
the Wave, Heat, and Schrödinger Equations.Dover Publications , New York 2007.
[10 ] SEN , M . : POWERS , J. M. Lecture Notes on Mathematical Methods .University of Notre Dame
, Indiana , USA , 2012 .502P.
[11 ] SIMON , B. :Schrödinger operators in the twentieth century .J . Math . phys . vol 41(6),
2000,pp.3523 -3555.
[12 ] SJöGREN ,P.;TORREA, J.L.On the boundary convergence of solutions to the Hermite
Schrödinger equation .
[13 ] TRIEBEL , H. Higher Analysis . J. A. Parth , Liepzig , 1993 .473P.
[14 ] BREZIS, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer,
Berlin 2011 . 614P.
[15 ] KAPLAN, W. Advanced Calculus, Fifth Edition.Publishing House of Electronics Industry 2010
.754P.