Journal of Artificial Intelligence and Metaheuristics

Journal DOI

https://doi.org/10.54216/JAIM

Submit Your Paper

2833-5597ISSN (Online)

Volume 7 , Issue 2 , PP: 18-31, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

Advancements and Future Directions in Machine Learning for Medical Diagnostics: A Comprehensive Review

Basant Sameh 1 * , Nima Khodadadi 2 , Ehsan khodadadi 3 , Marwa M. Eid 4 , S. K. Towfek 5

  • 1 Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology (DHIET), Mansoura 35111, Egypt - (CH1900072@dhiet.edu.eg)
  • 2 Department of Civil and Architectural Engineering, University of Miami, Coral Gables, FL, USA - (nima.khodadadi@miami.edu)
  • 3 Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA - (Ehsank@uark.edu)
  • 4 Faculty of Artificial Intelligence, Delta University for Science and Technology, Mansoura 35111, Egypt - (mmm@ieee.org)
  • 5 Computer Science and Intelligent Systems Research Center, Blacksburg 24060, Virginia, USA - (sktowfek@jcsis.org)
  • Doi: https://doi.org/10.54216/JAIM.070202

    Received: May 17, 2023 Revised: September 19, 2023 Accepted: February 17, 2024
    Abstract

    Machine learning (ML) based techniques have enjoyed significant popularity in addressing the hostility of numerous problems in a range of applications, such as finance, marketing, production, environment, health care, and security. One of the most important distinctions between machine learning and human ways of thinking is their ability to observe patterns, make interpretations, reveal some hidden relationships, and analyze huge amounts of data. Machine learning (ML) technology can lead to improved specificity, sensitivity, predictability, and steadiness of such systems. Through this review, though, we will have an in-depth discourse on the application of machine learning in the field of medicine and how the latest technologies are mostly deployed in diagnostics. Medical applications that are widely used, including but not limited to machine learning solutions for medical chemistry, wearable sensors, cancer, the brain, and medical imaging, will be discussed in detail, with a focus on model adjustments to address the problems faced by the applications. In the course of the work, academics, practitioners, and decision-makers will have plenty of opportunities to utilize the findings, references, and insights of this study to improve their work and steer future research.

    Keywords :

    Machine learning , Artificial Intelligence , Machine Learning Applications , Medical Field , ML in Healthcare.

    References

    [1]    Emmert-Streib, F. (2021). From the Digital Data Revolution toward a Digital Society: Pervasiveness of Artificial Intelligence. Machine Learning and Knowledge Extraction, 3(1), Article 1. https://doi.org/10.3390/make3010014

    [2]    Gruetzemacher, R., & Whittlestone, J. (2022). The transformative potential of artificial intelligence. Futures, 135, 102884. https://doi.org/10.1016/j.futures.2021.102884

    [3]    Ramezani, M., Takian, A., Bakhtiari, A., Rabiee, H. R., Fazaeli, A. A., & Sazgarnejad, S. (2023). The application of artificial intelligence in health financing: A scoping review. Cost Effectiveness and Resource Allocation : C/E, 21, 83. https://doi.org/10.1186/s12962-023-00492-2

    [4]    Ma, L., & Sun, B. (2020). Machine learning and AI in marketing – Connecting computing power to human insights. International Journal of Research in Marketing, 37(3), 481–504. https://doi.org/10.1016/j.ijresmar.2020.04.005

    [5]    El-kenawy, E.-S. M., Albalawi, F., Ward, S. A., Ghoneim, S. S. M., Eid, M. M., Abdelhamid, A. A., Bailek, N., & Ibrahim, A. (2022). Feature Selection and Classification of Transformer Faults Based on Novel Meta-Heuristic Algorithm. Mathematics, 10(17), Article 17. https://doi.org/10.3390/math10173144

    [6]    El-kenawy, E.-S., Ibrahim, A., Mirjalili, S., Eid, M., & Hussein, S. (2020). Novel Feature Selection and Voting Classifier Algorithms for COVID-19 Classification in CT Images. IEEE Access, 8, 179317–179335. https://doi.org/10.1109/ACCESS.2020.3028012

    [7]    Abdelhamid, A. A., El-Kenawy, E.-S. M., Ibrahim, A., Eid, M. M., Khafaga, D. S., Alhussan, A. A., Mirjalili, S., Khodadadi, N., Lim, W. H., & Shams, M. Y. (2023). Innovative Feature Selection Method Based on Hybrid Sine Cosine and Dipper Throated Optimization Algorithms. IEEE Access, 11, 79750–79776. https://doi.org/10.1109/ACCESS.2023.3298955

    [8]    Deng, W., Chen, R., He, B., Liu, Y., Yin, L., & Guo, J. (2012). A novel two-stage hybrid swarm intelligence optimization algorithm and application. Soft Computing, 16(10), 1707–1722. https://doi.org/10.1007/s00500-012-0855-z

    [9]    Bolón-Canedo, V., Sánchez-Maroño, N., & Alonso-Betanzos, A. (2016). Feature selection for high-dimensional data. Progress in Artificial Intelligence, 5(2), 65–75. https://doi.org/10.1007/s13748-015-0080-y

    [10] Molina, L. C., Belanche, L., & Nebot, A. (2002). Feature selection algorithms: A survey and experimental evaluation. 2002 IEEE International Conference on Data Mining, 2002. Proceedings., 306–313. https://doi.org/10.1109/ICDM.2002.1183917

    [11] El-kenawy, E.-S. M., Khodadadi, N., Mirjalili, S., Abdelhamid, A. A., Eid, M. M., & Ibrahim, A. (2024). Greylag Goose Optimization: Nature-inspired optimization algorithm. Expert Systems with Applications, 238, 122147. https://doi.org/10.1016/j.eswa.2023.122147

    [12] Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE Computational Intelligence Magazine, 1(4), 28–39. https://doi.org/10.1109/MCI.2006.329691

    [13] El-Kenawy, E.-S. M., Eid, M. M., Abdelhamid, A. A., Ibrahim, A., Takieldeen, A. E., & Elkhalik, S. H. A. (2022). Hybrid Particle Swarm and Gray Wolf optimization for Prediction of Appliances in Low-Energy Houses. 2022 International Telecommunications Conference (ITC-Egypt), 1–5. https://doi.org/10.1109/ITC-Egypt55520.2022.9855690

    [14] Papa, J. P., Rosa, G. H., de Souza, A. N., & Afonso, L. C. S. (2018). Feature selection through binary brain storm optimization. Computers & Electrical Engineering, 72, 468–481. https://doi.org/10.1016/j.compeleceng.2018.10.013

    [15] Eid, M. M., El-kenawy, E.-S. M., & Ibrahim, A. (2021). A binary Sine Cosine-Modified Whale Optimization Algorithm for Feature Selection. 2021 National Computing Colleges Conference (NCCC), 1–6. https://doi.org/10.1109/NCCC49330.2021.9428794

    [16] Arora, S., & Anand, P. (2019). Binary butterfly optimization approaches for feature selection. Expert Systems with Applications, 116, 147–160. https://doi.org/10.1016/j.eswa.2018.08.051

    [17] Chuang, L.-Y., Tsai, S.-W., & Yang, C.-H. (2011). Improved binary particle swarm optimization using catfish effect for feature selection. Expert Systems with Applications, 38(10), 12699–12707. https://doi.org/10.1016/j.eswa.2011.04.057

    [18] Salimi, H. (2015). Stochastic Fractal Search: A powerful metaheuristic algorithm. Knowledge-Based Systems, 75, 1–18. https://doi.org/10.1016/j.knosys.2014.07.025

    [19] Abdelhamid, A. A., El-Kenawy, E.-S. M., Ibrahim, A., Eid, M. M., Khafaga, D. S., Alhussan, A. A., Mirjalili, S., Khodadadi, N., Lim, W. H., & Shams, M. Y. (2023). Innovative Feature Selection Method Based on Hybrid Sine Cosine and Dipper Throated Optimization Algorithms. IEEE Access, 11, 79750–79776. https://doi.org/10.1109/ACCESS.2023.3298955

    [20] Abdollahzadeh, B., & Gharehchopogh, F. S. (2022). A multi-objective optimization algorithm for feature selection problems. Engineering with Computers, 38(3), 1845–1863. https://doi.org/10.1007/s00366-021-01369-9

    [21] Aghdam, M. H., Ghasem-Aghaee, N., & Basiri, M. E. (2009). Text feature selection using ant colony optimization. Expert Systems with Applications, 36(3, Part 2), 6843–6853. https://doi.org/10.1016/j.eswa.2008.08.022

    [22] Al-Tashi, Q., Abdul Kadir, S. J., Rais, H. M., Mirjalili, S., & Alhussian, H. (2019). Binary Optimization Using Hybrid Grey Wolf Optimization for Feature Selection. IEEE Access, 7, 39496–39508. https://doi.org/10.1109/ACCESS.2019.2906757

    [23] Arora, S., & Anand, P. (2019). Binary butterfly optimization approaches for feature selection. Expert Systems with Applications, 116, 147–160. https://doi.org/10.1016/j.eswa.2018.08.051

    [24] Chuang, L.-Y., Tsai, S.-W., & Yang, C.-H. (2011). Improved binary particle swarm optimization using catfish effect for feature selection. Expert Systems with Applications, 38(10), 12699–12707. https://doi.org/10.1016/j.eswa.2011.04.057

    [25] Dwivedi, R., Tiwari, A., Bharill, N., & Ratnaparkhe, M. (2023). A Novel Clustering-Based Hybrid Feature Selection Approach Using Ant Colony Optimization. Arabian Journal for Science and Engineering, 48(8), 10727–10744. https://doi.org/10.1007/s13369-023-07719-7

    [26] El-Kenawy, E.-S. M., Eid, M. M., Saber, M., & Ibrahim, A. (2020). MbGWO-SFS: Modified Binary Grey Wolf Optimizer Based on Stochastic Fractal Search for Feature Selection. IEEE Access, 8, 107635–107649. https://doi.org/10.1109/ACCESS.2020.3001151

    [27] Emary, E., Zawbaa, H. M., & Hassanien, A. E. (2016). Binary grey wolf optimization approaches for feature selection. Neurocomputing, 172, 371–381. https://doi.org/10.1016/j.neucom.2015.06.083

    [28] Ghaemi, M., & Feizi-Derakhshi, M.-R. (2016). Feature selection using Forest Optimization Algorithm. Pattern Recognition, 60, 121–129. https://doi.org/10.1016/j.patcog.2016.05.012

    [29] Kamyab, S., & Eftekhari, M. (2016). Feature selection using multimodal optimization techniques. Neurocomputing, 171, 586–597. https://doi.org/10.1016/j.neucom.2015.06.068

    [30] Khodadadi, N., Khodadadi, E., Al-Tashi, Q., El-Kenawy, E.-S. M., Abualigah, L., Abdulkadir, S. J., Alqushaibi, A., & Mirjalili, S. (2023). BAOA: Binary Arithmetic Optimization Algorithm With K-Nearest Neighbor Classifier for Feature Selection. IEEE Access, 11, 94094–94115. https://doi.org/10.1109/ACCESS.2023.3310429

    [31] Liu, Y., Wang, G., Chen, H., Dong, H., Zhu, X., & Wang, S. (2011). An Improved Particle Swarm Optimization for Feature Selection. Journal of Bionic Engineering, 8(2), 191–200. https://doi.org/10.1016/S1672-6529(11)60020-6

    [32] Mafarja, M., & Mirjalili, S. (2018). Whale optimization approaches for wrapper feature selection. Applied Soft Computing, 62, 441–453. https://doi.org/10.1016/j.asoc.2017.11.006

    [33] Papa, J. P., Rosa, G. H., de Souza, A. N., & Afonso, L. C. S. (2018). Feature selection through binary brain storm optimization. Computers & Electrical Engineering, 72, 468–481. https://doi.org/10.1016/j.compeleceng.2018.10.013

    [34] Song, X., Zhang, Y., Gong, D., & Sun, X. (2021). Feature selection using bare-bones particle swarm optimization with mutual information. Pattern Recognition, 112, 107804. https://doi.org/10.1016/j.patcog.2020.107804

    [35] Tabakhi, S., Moradi, P., & Akhlaghian, F. (2014). An unsupervised feature selection algorithm based on ant colony optimization. Engineering Applications of Artificial Intelligence, 32, 112–123. https://doi.org/10.1016/j.engappai.2014.03.007

    [36] Zawbaa, H. M., Emary, E., Parv, B., & Sharawi, M. (2016). Feature selection approach based on moth-flame optimization algorithm. 2016 IEEE Congress on Evolutionary Computation (CEC), 4612–4617. https://doi.org/10.1109/CEC.2016.7744378

    [37] Khafaga, D., El-kenawy, E.-S., Alrowais, F., Kumar, S., Ibrahim, A., & Abdelhamid, A. (2022). Novel Optimized Feature Selection Using Metaheuristics Applied to Physical Benchmark Datasets. Computers, Materials and Continua, 74, 4027–4041. https://doi.org/10.32604/cmc.2023.033039

    [38] Stańczyk, U. (2015). Feature Evaluation by Filter, Wrapper, and Embedded Approaches. In U. Stańczyk & L. C. Jain (Eds.), Feature Selection for Data and Pattern Recognition (pp. 29–44). Springer. https://doi.org/10.1007/978-3-662-45620-0_3

    [39] Chen, G., & Chen, J. (2015). A novel wrapper method for feature selection and its applications. Neurocomputing, 159, 219–226. https://doi.org/10.1016/j.neucom.2015.01.070

    [40] Sánchez-Maroño, N., Alonso-Betanzos, A., & Tombilla-Sanromán, M. (2007). Filter Methods for Feature Selection – A Comparative Study. In H. Yin, P. Tino, E. Corchado, W. Byrne, & X. Yao (Eds.), Intelligent Data Engineering and Automated Learning—IDEAL 2007 (pp. 178–187). Springer. https://doi.org/10.1007/978-3-540-77226-2_19

    [41] Wang, S., Tang, J., & Liu, H. (2015). Embedded Unsupervised Feature Selection. Proceedings of the AAAI Conference on Artificial Intelligence, 29(1), Article 1. https://doi.org/10.1609/aaai.v29i1.9211

    [42] Dehghani, M., Trojovská, E., & Trojovský, P. (2022). A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process. Scientific Reports, 12(1), Article 1. https://doi.org/10.1038/s41598-022-14225-7

    [43] Nematollahi, A. F., Rahiminejad, A., & Vahidi, B. (2017). A novel physical based meta-heuristic optimization method known as Lightning Attachment Procedure Optimization. Applied Soft Computing, 59, 596–621. https://doi.org/10.1016/j.asoc.2017.06.033

    [44] van der Schelling, M. (2021). A data-driven heuristic decision strategy for data-scarce optimization: With an application towards bio-based composites. https://repository.tudelft.nl/islandora/object/uuid%3Ad58271d6-21bb-470c-a5ee-4584b3b8ee29

    [45] Fatih Güven, A., & Mahmoud Samy, M. (2022). Performance analysis of autonomous green energy system based on multi and hybrid metaheuristic optimization approaches. Energy Conversion and Management, 269, 116058. https://doi.org/10.1016/j.enconman.2022.116058

    [46] Taghian, S., & Nadimi-Shahraki, M. H. (2019). A Binary Metaheuristic Algorithm for Wrapper Feature Selection (Vol. 8, p. 172). https://doi.org/10.13140/RG.2.2.34937.90722

    [47] Sahin, O., & Akay, B. (2016). Comparisons of metaheuristic algorithms and fitness functions on software test data generation. Applied Soft Computing, 49, 1202–1214. https://doi.org/10.1016/j.asoc.2016.09.045

    Cite This Article As :
    Sameh, Basant. , Khodadadi, Nima. , khodadadi, Ehsan. , M., Marwa. , K., S.. Advancements and Future Directions in Machine Learning for Medical Diagnostics: A Comprehensive Review. Journal of Artificial Intelligence and Metaheuristics, vol. , no. , 2024, pp. 18-31. DOI: https://doi.org/10.54216/JAIM.070202
    Sameh, B. Khodadadi, N. khodadadi, E. M., M. K., S. (2024). Advancements and Future Directions in Machine Learning for Medical Diagnostics: A Comprehensive Review. Journal of Artificial Intelligence and Metaheuristics, (), 18-31. DOI: https://doi.org/10.54216/JAIM.070202
    Sameh, Basant. Khodadadi, Nima. khodadadi, Ehsan. M., Marwa. K., S.. Advancements and Future Directions in Machine Learning for Medical Diagnostics: A Comprehensive Review. Journal of Artificial Intelligence and Metaheuristics , no. (2024): 18-31. DOI: https://doi.org/10.54216/JAIM.070202
    Sameh, B. , Khodadadi, N. , khodadadi, E. , M., M. , K., S. (2024) . Advancements and Future Directions in Machine Learning for Medical Diagnostics: A Comprehensive Review. Journal of Artificial Intelligence and Metaheuristics , () , 18-31 . DOI: https://doi.org/10.54216/JAIM.070202
    Sameh B. , Khodadadi N. , khodadadi E. , M. M. , K. S. [2024]. Advancements and Future Directions in Machine Learning for Medical Diagnostics: A Comprehensive Review. Journal of Artificial Intelligence and Metaheuristics. (): 18-31. DOI: https://doi.org/10.54216/JAIM.070202
    Sameh, B. Khodadadi, N. khodadadi, E. M., M. K., S. "Advancements and Future Directions in Machine Learning for Medical Diagnostics: A Comprehensive Review," Journal of Artificial Intelligence and Metaheuristics, vol. , no. , pp. 18-31, 2024. DOI: https://doi.org/10.54216/JAIM.070202