Volume 7 , Issue 2 , PP: 38-45, 2023 | Cite this article as | XML | Html | PDF | Full Length Article
R. Sivasamy 1 , M. Mohammed Jabarulla 2 , Broumi said 3 *
Doi: https://doi.org/10.54216/JNFS.070204
The main contribution of this paper is to get extended ideas of various interval-valued bipolar Pythagorean fuzzy soft graphs (I-VBPFSGs) and to extend the concept of the Pythagorean fuzzy soft graph to the bipolar frameworks. Finally, in order to demonstrate, how to calculate an interval-valued Pythagorean bipolar fuzzy soft graph for a specific application, a numerical example using city data from the Yunnan province is presented.
Pythagorean fuzzy soft graph , Bipolar fuzzy soft graph , Bipolar Pythagorean fuzzy soft graph , Interval-valued Pythagorean fuzzy soft graph , Interval-valued bipolar Pythagorean fuzzy soft graph.
[1] M. Akram, W.A. Dudek, Interval-valued fuzzy graphs, Comput. Math. Appl. 61 (2011), 289-299.
[2] Akram, M. and B. Davvaz, Strong intuitionistic fuzzy graphs, Filomat 269 (1) (2012), 177-196.
[3] M. Akram and W.A. Dudek, Intuitionistic fuzzy hypergraphs with applications, Inf. Sci. 218 (2013), 182-193.
[4] M. Akram and G. Shahzadi, Pythagorean fuzzy soft graphs with applications, J. Intell. Fuzzy Syst. 38 (2020), 4977-4991.
[5] K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst. 20(1) (1986), 87-96.
[6] K.T. Atanassov and G. Gargov, Interval-valued intuitionistic fuzzy sets, fuzzy sets and systems. Neural Comput. Appl. 31 (1989), 343-349,
[7] P. Bhattacharya, Some remarks on fuzzy graphs. Pattern Recog. Lett. 6(5) (1987), Article ID 297302.
[8] S. Dick, R.R. Yager, and O. Yazdanbaksh, On Pythagorean and complex fuzzy set operations. IEEE Trans. Fuzzy Syst. 24(5) (2015), 1009-1021.
[9] D. Molodtsov, Soft set theory-First results, Comput. Math. Appl. 37 (1999), 19-31.
[10] S.N. Mishra and A. Pal, Bipolar interval-valued fuzzy graphs. J. Inter. Sci. press 9(41) (2016), 1022-1028.
[11] M. Mohammed Jabarulla and R. Sivasamy, Strong interval-valued Pythagorean fuzzy soft graphs, Adv. Math. Sci. Eng. Ratio Math. 46 (2023), 127-137.
[12] S.Y. Mohamed and A. Mohamed Ali Interval-valued Pythagorean fuzzy graph, J. Comput. Math. Sci. 9(10) (2018), 1497-1511.
[13] A. Rosenfeld, Fuzzy graphs. in: L.A. Zadeh, K.S. Fu, M. Shimura (Eds.). Fuzzy Sets and Their Applications. Academic Press, New York, (1975), 77-95.
[14] S. Shahzadi and M. Akram, Intuitionistic fuzzy soft graphs with applications, J. Comput. Math. Sci. 55(12) (2017), 369-392.
[15] R. Sivasamy, M. M. Jabarulla, and B.said, Interval-valued Pythagorean fuzzy soft graphs. J. Neutrosophic Fuzzy Syst. 07 (2023), 08–15.
[16] R.R. Yager, Pythagorean fuzzy subsets, in Proceedings of Joint IFSA World Congress and NAFIPS Annual Meeting, Edmonton. Canada, (2013), 57-61.
[17] R.R. Yager, and A.M. Abbasov, Pythagorean membership grades, complex numbers, and decision making. Int. J. Intell. Syst. 28(5) (2013), 436-452.
[18] R.R. Yager, Pythagorean membership grades in multicriteria decision making. IEEE Trans. Fuzzy Systems. 22(4) (2014), 958-965.
[19] L.A. Zadeh, Fuzzy sets, Infromation and Control 8(3) (1965), 338-353.
[20] X. Zhang and Z. Xu, Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets, Int. J. Intell. Syst. 29(12) (2014), 1061-1078.
[21] W.R, Zhang, Bipolar fuzzy sets and relations: a computational framework for cognitive modelling and multiagent decision analysis, Proceedings of IEEE Conf. (1994):305-309.