Volume 17 , Issue 1 , PP: 01-15, 2025 | Cite this article as | XML | Html | PDF | Full Length Article
Surya A. 1 * , Chantilyan M. 2 , Chukka Ganesh 3 , Padmesh G. 4 , Patrick A. P. 5 , Raakesh G. 6 , S. Malathi 7
Doi: https://doi.org/10.54216/JISIoT.170101
The emergence of chatbots in the healthcare sector is increasingly pivotal, as they provide rapid and accessible assistance for the early detection of diseases and medical guidance. This study delineates a sophisticated two-tier healthcare chatbot system that synergistically integrates deep learning for image-based skin disease classification with machine learning for symptom-driven disease prediction. The system, developed in Python, employs a Hybrid U-Net & Improved MobileNet-V3 model to accurately identify dermatological conditions from images, while a Decision Tree Classifier is utilized to forecast diseases based on user-reported symptoms. Through meticulous evaluation of user inputs, the chatbot facilitates interactive consultations that encompass severity assessments, disease predictions, and preventive recommendations. Rigorous cross-validation of the symptom-based models, alongside testing on a bespoke dataset of skin disease images, substantiates the efficacy of the proposed methodology, demonstrating commendable predictive accuracy. The chatbot exemplifies significant potential by amalgamating conversational artificial intelligence with a hybrid approach of Hybrid U-Net & Improved MobileNet-V3 for image classification and Decision Tree Classifier for symptom analysis, thereby enhancing the landscape of telemedicine and patient care.
Healthcare chatbot , Decision Tree Classifier , Hybrid U-Net & , Improved MobileNet-V3 , Symptom analysis , Disease prediction , Artificial intelligence
[1] A. Kumar, A. Vishwakarma, V. Bajaj, and S. Mishra, "Novel Mixed Domain Hand-Crafted Features for Skin Disease Recognition Using Multiheaded CNN," IEEE Trans. Instrum. Meas., vol. 73, pp. 1-1, 2024, doi: 10.1109/TIM.2024.3370772.
[2] A. J. Smith, B. K. Johnson, and C. L. Adams, "Deep Learning Techniques for Skin Lesion Classification: A Survey," Journal of Medical Imaging and Health Informatics, vol. 14, no. 1, pp. 123-135, 2023.
[3] T. Pham, A. Doucet, C. Luong, C. Tran, and H. Dung, "Improving Skin-Disease Classification Based on Customized Loss Function Combined With Balanced Mini-Batch Logic and Real-Time Image Augmentation," IEEE Access, vol. 8, pp. 1-1, 2020, doi: 10.1109/ACCESS.2020.3016653.
[4] M. A. Khan, K. Muhammad, M. Sharif, T. Akram, and V. H. C. da Albuquerque, "Multi-class skin lesion detection and classification via teledermatology," IEEE J. Biomed. Health Informat., vol. 25, no. 12, pp. 4267–4275, Dec. 2021.
[5] K. Ali, Z. A. Shaikh, A. A. Khan, and A. A. Laghari, "Multiclass skin cancer classification using EfficientNets—A first step towards preventing skin cancer," Neurosci. Informat., vol. 2, no. 4, Art. no. 100034, Dec. 2022.
[6] M. Khan, K. Muhammad, M. Sharif, T. Akram, and V. H. C. da Albuquerque, "Multi-Class Skin Lesion Detection and Classification via Teledermatology," IEEE J. Biomed. Health Informat., vol. 25, no. 12, pp. 4267–4275, Dec. 2021, doi: 10.1109/JBHI.2021.3067789.
[7] I. Podder, N. Pipil, A. Dhabal, S. Mondal, V. Pienyii, and H. Mondal, "Evaluation of Artificial Intelligence-Based Chatbot Responses to Common Dermatological Queries," Jordan Med. J., vol. 58, no. 3, pp. 1-10, Mar. 2024.
[8] M. Hammad, P. PÅ‚awiak, M. ElAffendi, A. A. Abd El-Latif, and A. A. Abdel Latif, "Enhanced Deep Learning Approach for Accurate Eczema and Psoriasis Skin Detection," Sensors, vol. 23, no. 16, p. 7295, 2023.
[9] A. Aboulmira, H. Hrimech, and M. Lachgar, "Comparative study of multiple CNN models for classification of 23 skin diseases," Int. J. Online Biomed. Eng., vol. 18, no. 11, pp. 127–142, Aug. 2022.
[10] A. Imran, A. Nasir, M. Bilal, G. Sun, A. Alzahrani, and A. Almuhaimeed, "Skin Cancer Detection Using Combined Decision of Deep Learners," IEEE Access, vol. 10, pp. 118198-118212, 2022, doi: 10.1109/ACCESS.2022.3220329.
[11] P. Yao, S. Shen, M. Xu, P. Liu, F. Zhang, J. Xing, P. Shao, B. Kaffenberger, and R. Xu, "Single Model Deep Learning on Imbalanced Small Datasets for Skin Lesion Classification," IEEE Trans. Med. Imaging, vol. 40, no. 1, pp. 1-1, 2021, doi: 10.1109/TMI.2021.3136682.
[12] R. Mittal, F. Jeribi, R. J. Martin, V. Malik, S. J. Menachery, and J. Singh, "DermCDSM: Clinical Decision Support Model for Dermatosis Using Systematic Approaches of Machine Learning and Deep Learning," IEEE Access, vol. 12, pp. 47319-47337, 2024, doi: 10.1109/ACCESS.2024.3373539.
[13] A. Kakumani and V. Katla, "An Ensemble Learning Approach For Improved Skin Cancer Classification," in Proc. 2023 Int. Conf. Comput. Commun. Networks (ICCCNT), 2023, pp. 1-5, doi: 10.1109/ICCCNT56998.2023.10306934.
[14] S. Kohli, U. Verma, V. V. Kirpalani, and R. Srinath, "Dermatobot: An Image Processing Enabled Chatbot for Diagnosis and Tele-remedy of Skin Diseases," in 2022 3rd Int. Conf. Emerging Technol. (INCET), Belgaum, India, 2022, pp. 1-5, doi: 10.1109/INCET54531.2022.9824756.
[15] M. N. Bajwa et al., "Computer-aided diagnosis of skin diseases using deep neural networks," Appl. Sci., vol. 10, no. 7, p. 2488, Apr. 2020.
[16] U. Bharti, D. Bajaj, H. Batra, S. Lalit, S. Lalit, and A. Gangwani, "Medbot: Conversational Artificial Intelligence Powered Chatbot for Delivering Tele-Health after COVID-19," in 2020 5th Int. Conf. Commun. Electron. Syst. (ICCES), Coimbatore, India, 2020, pp. 870-875, doi: 10.1109/ICCES48766.2020.9137944.
[17] M. Narendra, T. S. Harshini, and L. Jani Anbarasi, "Advancing Skin Disease Diagnosis: A Multimodal Approach Utilizing Telegram API Token Chatbot for Text and Image Analysis in Skin Disease Classification," IEEE Access, vol. 12, pp. 189009-189023, 2024, doi: 10.1109/ACCESS.2024.3516884.
[18] S. P. R. K.V and A. K.S, "Basal Cell Carcinoma Prediction in Pigmented Skin Infection using Intelligent Techniques," in 2023 3rd Int. Conf. Artif. Intell. Smart Energy (ICAIS), Coimbatore, India, 2023, pp. 741-746, doi: 10.1109/ICAIS56108.2023.10073849.
[19] A. Adebiyi, N. Abdalnabi, E. Hoffman, J. Hirner, E. Simoes, M. Becevic, and P. Rao, "Accurate Skin Lesion Classification Using Multimodal Learning on the HAM10000 Dataset," BioRxiv, 2024, doi: 10.1101/2024.05.30.24308213.
[20] D. Lalrinawma, V. D. A. Kumar, and R. Lalchhanhima, "Image Processing and Deep Learning for Classification of Skin Lesion Image," in 2024 5th Int. Conf. Smart Electron. Commun. (ICOSEC), Trichy, India, 2024, pp. 1712-1717, doi: 10.1109/ICOSEC61587.2024.10722560.
[21] S. M, M. A. Ala Walid, D. Sarada Prasanna Mallick, R. Rastogi, A. Chauhan, and A. Vidya, "Melanoma Skin Cancer Detection using a CNN-Regularized Extreme Learning Machine (RELM) based Model," in 2023 2nd Int. Conf. Electron. Renew. Syst. (ICEARS), Tuticorin, India, 2023, pp. 1239-1245, doi: 10.1109/ICEARS56392.2023.10085489.
[22] Z. N. Fikile Gasa, P. A. Owolawi, T. Mapayi, and K. Odeyemi, "MobileNet Neural Network skin disease detector with Raspberry Pi Integrated to Telegram," 2020.
[23] K. Ramamurthy, T. Vaichole, S. Kulkarni, O. Yadav, and F. Khan, "Eff2Net: An efficient channel attention-based convolutional neural network for skin disease classification," Biomed. Signal Process. Control, vol. 73, p. 103406, 2022, doi: 10.1016/j.bspc.2021.103406.
[24] K. Behara, E. Bhero, and J. Agee, "An Improved Skin Lesion Classification Using a Hybrid Approach with Active Contour Snake Model and Lightweight Attention-Guided Capsule Networks," 2024, doi: 10.20944/preprints202401.2170.v1.
[25] G. H. M. Shahriar Himel, M. M. Islam, K. Al-Aff, S. Ibne Karim, and M. Sikder, "Skin Cancer Segmentation and Classification Using Vision Transformer for Automatic Analysis in Dermatoscopy-based Non-invasive Digital System," 2024, doi: 10.13140/RG.2.2.30536.49925.