Journal of Intelligent Systems and Internet of Things

Journal DOI

https://doi.org/10.54216/JISIoT

Submit Your Paper

2690-6791ISSN (Online) 2769-786XISSN (Print)

Volume 3 , Issue 2 , PP: 85-94, 2021 | Cite this article as | XML | Html | PDF | Full Length Article

Intelligent Energy Management System for Sustainable Smart Homes

Mahmoud Ismail 1 * , Shereen Zaki 2 , Heba Rashad 3

  • 1 Faculty of computers and Informatics, Zagazig University, Zagazig, 44519, Egypt - (mmsabe@zu.edu.eg)
  • 2 Faculty of computers and Informatics, Zagazig University, Zagazig, 44519, Egypt - (SZSoliman@fci.zu.edu.eg)
  • 3 Faculty of computers and Informatics, Zagazig University, Zagazig, 44519, Egypt - (HRAbdelhady@zu.edu.eg)
  • Doi: https://doi.org/10.54216/JISIoT.030204

    Received: April 06, 2021 Accepted: July 09, 2021
    Abstract

    Energy management in smart homes involves the use of technology to optimize energy consumption, reduce waste, and lower energy costs. Smart homes are equipped with various devices, sensors, and systems that are designed to monitor and control energy usage.  We proposed a novel Energy Management System (EMS) that integrates Machine Learning (ML) techniques and IoT paradigms to optimize energy consumption and reduce energy costs for sustainable smart homes. In addition to the AI-based EMS, we propose integrating fog computing, a decentralized computing infrastructure, to improve the speed, accuracy, privacy, and security of the EMS. The fog nodes can collect data from the various sensors and devices in the smart home and process the data in real time, reducing latency and allowing for quicker decision-making. By processing data at the edge of the network, fog computing also reduces the amount of data that needs to be sent to the cloud, improving privacy and security. Experimental proof-of-concept simulations demonstrated the efficiency and effectiveness of our system in improving sustainability in smart homes.

    Keywords :

    Smart Homes , Sustainability , Intelligent Energy Management , Fog Computing

    References

    [1].  Khajenasiri, I., Estebsari, A., Verhelst, M., & Gielen, G. (2017). A review on Internet of Things solutions for intelligent energy control in buildings for smart city applications.  Energy Procedia, 111, 770-779.

    [2].  Zhou, B., Li, W., Chan, K. W., Cao, Y., Kuang, Y., Liu, X., & Wang, X. (2016). Smart home energy management  systems:  Concept,  configurations,  and  scheduling  strategies.  Renewable  and Sustainable Energy Reviews, 61, 30-40.

    [3].  Al-Ali,  A. R., Zualkernan, I. A., Rashid, M., Gupta, R., & AliKarar, M. (2017). A smart home energy  management  system  using  IoT  and  big  data  analytics  approach.  IEEE  Transactions  on Consumer Electronics, 63(4), 426-434.

    [4].  Al-Ali,  A. R., Zualkernan, I. A., Rashid, M., Gupta, R., & AliKarar, M. (2017). A smart home energy  management  system  using  IoT  and  big  data  analytics  approach.  IEEE  Transactions  on Consumer Electronics, 63(4), 426-434.

    [5].  Marinakis,  V.,  &  Doukas,  H.  (2018).  An  advanced  IoT-based  system  for  intelligent  energy management in buildings. Sensors, 18(2), 610.

    [6].  Saad al-sumaiti, A., Ahmed, M. H., & Salama, M. M. (2014). Smart home  activities: A literature review. Electric Power Components and Systems, 42(3-4), 294-305.

    [7].  McMahan,  B.,  Moore,  E.,  Ramage,  D.,  Hampson,  S.,  &  y  Arcas,  B.  A.  (2017,  April). Communication-efficient  learning  of  deep  networks  from  decentralized  data.  In  Artificial intelligence and statistics (pp. 1273-1282). PMLR.

    [8].  Li, W., Logenthiran, T., & Woo, W. L. (2015, November). Intelligent multi-agent system for smart home energy management. In  2015 IEEE Innovative Smart Grid Technologies-Asia (ISGT ASIA)(pp. 1-6). IEEE.

    [9].  Nilsson,  A.,  Wester,  M.,  Lazarevic,  D.,  &  Brandt,  N.  (2018).  Smart  homes,  home  energy management  systems  and  real-time  feedback:  Lessons  for  influencing  household  energy consumption from a Swedish field study. Energy and Buildings, 179, 15-25.

    [10].  L. Yu, R. Albelaihi, X. Sun, N. Ansari and M. Devetsikiotis, "Jointly Optimizing Client Selection and Resource Management in Wireless  Federated Learning for Internet of Things," in IEEE  Internet  of  Things  Journal,  vol.  9,  no.  6,  pp.  4385 -4395,  15  March15,  2022,  doi: 10.1109/JIOT.2021.3103715.

    [11].  Han, J., Choi, C. S., Park, W. K., Lee, I., & Kim, S. H. (2014). PLC-based photovoltaic system management for smart home energy management system. IEEE Transactions on Consumer Electronics, 60(2), 184-189.

    [12].  Yu, L., Jiang, T., & Zou, Y. (2017). Online energy management for a sustainable smart home with an HVAC load and random occupancy. IEEE Transactions on Smart Grid, 10(2), 1646-1659.

    [13].  Amer, M., Naaman, A., M'Sirdi, N. K., & El-Zonkoly, A. M. (2014, November). Smart home energy management systems survey. In International Conference on Renewable Energies for Developing Countries 2014 (pp. 167-173). IEEE.

    [14].  Li,  Tian,  et  al.  "Fair  resource  allocation  in  federated  learning."  arXiv  preprint arXiv:1905.10497 (2019).

    [15].  Pinto, T., Faia, R., Navarro-Caceres, M., Santos, G., Corchado, J. M., & Vale, Z. (2018). Multi-agent-based CBR recommender system for intelligent energy management in buildings. IEEE Systems Journal, 13(1), 1084-1095.

    [16].  Shareef, H., Ahmed, M. S., Mohamed, A., & Al Hassan, E. (2018). Review on home energy management system considering demand responses, smart technologies, and intelligent controllers. Ieee Access, 6, 24498-24509.

    [17].  M  Collotta, M., & Pau, G. (2015). Bluetooth for Internet of Things: A fuzzy approach to improve power management in smart homes. Computers & Electrical Engineering, 44, 137-152.

    [18].  Javaid, N., Ullah, I., Akbar, M., Iqbal, Z., Khan, F. A., Alrajeh, N., & Alabed, M. S. (2017). An intelligent load management system with renewable energy integration for smart homes. IEEE access, 5, 13587-13600.

    [19].  Javaid, N., Ullah, I., Akbar, M., Iqbal, Z., Khan, F. A., Alrajeh, N., & Alabed , M. S. (2017). An intelligent load management system with renewable energy integration for smart homes.  IEEE access, 5, 13587-13600.

    [20].  Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., & Smith, V. (2018). Federated Optimization in Heterogeneous Networks. arXiv preprint arXiv:1812.06127. 

    Cite This Article As :
    Ismail, Mahmoud. , Zaki, Shereen. , Rashad, Heba. Intelligent Energy Management System for Sustainable Smart Homes. Journal of Intelligent Systems and Internet of Things, vol. , no. , 2021, pp. 85-94. DOI: https://doi.org/10.54216/JISIoT.030204
    Ismail, M. Zaki, S. Rashad, H. (2021). Intelligent Energy Management System for Sustainable Smart Homes. Journal of Intelligent Systems and Internet of Things, (), 85-94. DOI: https://doi.org/10.54216/JISIoT.030204
    Ismail, Mahmoud. Zaki, Shereen. Rashad, Heba. Intelligent Energy Management System for Sustainable Smart Homes. Journal of Intelligent Systems and Internet of Things , no. (2021): 85-94. DOI: https://doi.org/10.54216/JISIoT.030204
    Ismail, M. , Zaki, S. , Rashad, H. (2021) . Intelligent Energy Management System for Sustainable Smart Homes. Journal of Intelligent Systems and Internet of Things , () , 85-94 . DOI: https://doi.org/10.54216/JISIoT.030204
    Ismail M. , Zaki S. , Rashad H. [2021]. Intelligent Energy Management System for Sustainable Smart Homes. Journal of Intelligent Systems and Internet of Things. (): 85-94. DOI: https://doi.org/10.54216/JISIoT.030204
    Ismail, M. Zaki, S. Rashad, H. "Intelligent Energy Management System for Sustainable Smart Homes," Journal of Intelligent Systems and Internet of Things, vol. , no. , pp. 85-94, 2021. DOI: https://doi.org/10.54216/JISIoT.030204