Journal of Intelligent Systems and Internet of Things

Journal DOI

https://doi.org/10.54216/JISIoT

Submit Your Paper

2690-6791ISSN (Online) 2769-786XISSN (Print)

Volume 7 , Issue 1 , PP: 62-73, 2022 | Cite this article as | XML | Html | PDF | Full Length Article

Federated Learning for Intelligent Resources Allocation in Internet of Things

Mahmoud Ismail 1 * , Shereen Zaki 2

  • 1 Faculty of computers and Informatics, Zagazig University, Zagazig, 44519, Egypt - (mmsabe@zu.edu.eg)
  • 2 Faculty of computers and Informatics, Zagazig University, Zagazig, 44519, Egypt - (SZSoliman@fci.zu.edu.eg)
  • Doi: https://doi.org/10.54216/JISIoT.070106

    Received: March 26, 2022 Accepted: October 21, 2022
    Abstract

    By using federated learning (FL), multiple Internet-of-Things (IoT) devices can construct a shared learning model without sending raw data to a centralized server. While FL has come a long way, it still has a ways to go. Issues such as heterogeneous user equipment (UEs) and data that is not independently and uniformly distributed are still obstacles. Facilitating a numerous UEs to participate in the learning in each cycle poses a possible problem of the huge communication budget. A weighted adjoining factor is presented to the localized gradient descent, generalizing the present FedAvg to solve these concerns. At the start of each global round, the proposed FL method randomly selects a fraction of the UEs to perform stochastic gradient descent in parallel. Then, we utilize the suggested FL method in cellular IoT to reduce either total power usage or execution duration of FL, in which a straightforward but effective path-following method is constructed for its explanations. At last, obtained simulations on poorly balanced data are presented to show that the presented FL algorithm is superior to FedAvg in terms of performance with respect to fast convergence. Moreover, they show that the suggested algorithm needs significantly less time and energy to train than the FL algorithm does when users contribute heavily to the learning process. These findings provide strong support for the suggested FL algorithm as a potential paradigm change for training mobile IoT networks with limited bandwidth.

    Keywords :

    Internet of Things , Cellular Network , Mobile Edge Computing , Federated Learning , Resource Allocation

    References

    [1].  Sharma,  S.  K.,  &  Wang,  X.  (2017).  Live  data  analytics  with  collaborative  edge  and  cloud processing in wireless IoT networks. IEEE Access, 5, 4621-4635.

    [2].  Preuveneers,  D.,  Rimmer,  V.,  Tsingenopoulos,  I.,  Spooren,  J.,  Joosen,  W.,  &  Ilie -Zudor,  E. (2018).  Chained  anomaly  detection  models  for  federated  learning:  An  intrusion  detection  case study. Applied Sciences, 8(12), 2663.

    [3].  Sisinni,  E.,  Saifullah,  A.,  Han,  S.,  Jennehag,  U.,  &  Gidlund,  M.  (2018).  Industrial  internet  of things:  Challenges,  opportunities,  and  directions.  IE EE  transactions  on  industrial  informatics, 14(11), 4724-4734.

    [4].  Ferreira, P. V. R., Paffenroth, R., Wyglinski, A. M., Hackett, T. M., Bilén, S. G., Reinhart, R. C., &  Mortensen,  D.  J.  (2018).  Multiobjective  reinforcement  learning  for  cognitive  satellite communications  using  deep  neural  network  ensembles.  IEEE  Journal  on  Selected  Areas  in Communications, 36(5), 1030-1041.

    [5].  Jeong, E., Oh, S., Kim, H., Park, J., Bennis, M., & Kim, S. L. (2018). Communication -efficient on-device machine learning: Federated distillation and augmentation under non-iid private  data. arXiv preprint arXiv:1811.11479.

    [6].  Smith, V., Chiang, C. K., Sanjabi, M., & Talwalkar, A. S. (2017). Federated multi-task learning. Advances in neural information processing systems, 30.

    [7].  Mao,  Y.,  You,  C.,  Zhang,  J.,  Huang,  K.,  &  Letaief,  K.  B.  (2017).  A  survey  on  mobile  edge computing:  The  communication  perspective.  IEEE  communications  surveys  &  tutorials,  19(4), 2322-2358.

    [8].  Huang,  L.,  Yin,  Y.,  Fu,  Z.,  Zhang,  S.,  Deng,  H.,  &  Liu,  D.  (2018).  LoAdaBoost:  Loss-based AdaBoost federated machine learning with reduced computational complexity on IID and non-IID 

    intensive care data. arXiv preprint arXiv:1811.12629.

    [9].  H.  S.  Lee  and  D.  E.  Lee,  “Resource  allocation  in  wireless  networks  with  federated  learning: Network  adaptability  and  learning  acceleration,”  ICT  Express,  2022,  doi: 10.1016/j.icte.2022.01.019.

    [10].  Xu,  Z.,  Wang,  Y.,  Tang,  J.,  Wang,  J.,  &  Gursoy,  M.  C.  (2017,  May).  A  deep reinforcement learning based framework for power-efficient resource allocation in cloud RANs. In 2017 IEEE International Conference on Communications (ICC) (pp. 1 -6). IEEE.

    [11].  Liaqat, M., Chang, V., Gani, A., Ab Hamid, S. H., Toseef, M., Shoaib, U., & Ali, R. L. (2017). Federated cloud resource management: Review and discussion. Journal of Network and Computer Applications, 77, 87-105.

    [12].  Liaqat, M., Chang, V., Gani, A., Ab Hamid, S. H., Toseef, M., Shoaib, U., & Ali, R. L. (2017). Federated cloud resource management: Review and discussion. Journal of Network and Computer Applications, 77, 87-105.

    [13].  Bittencourt, L., Immich, R., Sakellariou, R., Fonseca, N., Madeira, E., Curado, M., ... & Rana,  O.  (2018).  The  internet  of  things,  fog  and  cloud  continuum:  Integration  and  challenges. Internet of Things, 3, 134-155.

    [14].  Hameed, A., Khoshkbarforoushha, A., Ranjan, R., Jayaraman, P. P., Kolodziej, J., Balaji, P., ... & Zomaya, A. (2016). A survey and taxonomy on energy efficient resource allocation techniques for cloud computing systems. Computing, 98, 751-774. 

    [15].  Lee,  Y.  H.,  Huang,  K.  C.,  Shieh,  M.  R.,  &  Lai,  K.  C.  (2017).  Distributed  resource allocation in federated clouds. The Journal of Supercomputing, 73, 3196 -3211. 

    [16].  Fung,  S.  Y.  K.,  Raman,  K.  K.,  &  Zhu,  X.  K.  (2017).  Does  the  PCAOB  international inspection  program  improve  audit  quality  for  non -US-listed  foreign  clients?.  Journal  of Accounting and Economics, 64(1), 15-36.

    [17].  Caldas, S., Konečny, J., McMahan, H. B., & Talwalkar, A. (2018). Expanding the reach of federated learning by reducing client resource requirements. arXiv preprint arXiv:1812.07210. 

    [18].  Chen, F., Luo, M., Dong, Z., Li, Z., & He, X. (2018). Federated meta-learning with fast convergence and efficient communication. arXiv preprint arXiv:1802.07876 .

    [19].  Yu, Z., Hu, J., Min, G., Lu, H., Zhao, Z., Wang, H., & Georgalas, N. (2018, December). Federated  learning  based  proactive  content  caching  in  edge  computing.  In  2018  IEEE  Global Communications Conference (GLOBECOM) (pp. 1-6). IEEE.

    [20].  Samie,  F.,  Tsoutsouras,  V.,  Bauer,  L.,  Xydis,  S.,  Soudris,  D.,  &  Henkel,  J.  (2016, December). Computation offloading and resource allocation for low-power IoT edge devices. In 2016 IEEE 3rd world forum on internet of things (WF-IoT) (pp. 7-12). IEEE.

    [21].  Chen,  M.  H.,  Liang,  B.,  &  Dong,  M.  (2017,  May).  Joint  offloading  and  resource allocation for computation and communication in mobile cloud with computing access point. In IEEE INFOCOM 2017-IEEE Conference on Computer Communications (pp. 1 -9). IEEE.

    [22].  Tanaka,  H.,  Yoshida,  M.,  Mori,  K.,  &  Takahashi,  N.  (2018).  Multi-access  edge computing: A survey. Journal of Information Processing, 26, 87 -97.

    [23].  Colen, G. R., de Oliveira, L. G., Vinck, A. H., & Ribeiro, M. V. (2016). A spectral compressive resource allocation technique for PLC systems. IEEE Transactions on Communications, 65(2), 816-826.

    [24].  Cong  Luong,  N.,  Niyato,  D.,  In  Kim,  D.,  &  Wang,  L.  C.  (2018).  Efficient  Training Management for Mobile Crowd-Machine Learning: A Deep Reinforcement Learning Approach. arXiv e-prints, arXiv-1812.

    [25].  Samarakoon,  S.,  Bennis,  M.,  Saad,  W.,  &  Debbah,  M.  (2018,  December).  Federated learning  for  ultra-reliable  low-latency  V2V  communications.  In  2018  IEEE  Global Communications Conference (GLOBECOM) (pp. 1-7). IEEE.

    [26].  He,  Y.,  Liang,  C.,  Zhang,  Z.,  Yu,  F.  R.,  Zhao,  N.,  Yin,  H.,  &  Zhang,  Y.  (2017, September). Resource allocation in software-defined and information-centric vehicular networks with mobile edge computing. In 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall) (pp. 1-5). IEEE. 

    Cite This Article As :
    Ismail, Mahmoud. , Zaki, Shereen. Federated Learning for Intelligent Resources Allocation in Internet of Things. Journal of Intelligent Systems and Internet of Things, vol. , no. , 2022, pp. 62-73. DOI: https://doi.org/10.54216/JISIoT.070106
    Ismail, M. Zaki, S. (2022). Federated Learning for Intelligent Resources Allocation in Internet of Things. Journal of Intelligent Systems and Internet of Things, (), 62-73. DOI: https://doi.org/10.54216/JISIoT.070106
    Ismail, Mahmoud. Zaki, Shereen. Federated Learning for Intelligent Resources Allocation in Internet of Things. Journal of Intelligent Systems and Internet of Things , no. (2022): 62-73. DOI: https://doi.org/10.54216/JISIoT.070106
    Ismail, M. , Zaki, S. (2022) . Federated Learning for Intelligent Resources Allocation in Internet of Things. Journal of Intelligent Systems and Internet of Things , () , 62-73 . DOI: https://doi.org/10.54216/JISIoT.070106
    Ismail M. , Zaki S. [2022]. Federated Learning for Intelligent Resources Allocation in Internet of Things. Journal of Intelligent Systems and Internet of Things. (): 62-73. DOI: https://doi.org/10.54216/JISIoT.070106
    Ismail, M. Zaki, S. "Federated Learning for Intelligent Resources Allocation in Internet of Things," Journal of Intelligent Systems and Internet of Things, vol. , no. , pp. 62-73, 2022. DOI: https://doi.org/10.54216/JISIoT.070106