Journal of Intelligent Systems and Internet of Things

Journal DOI

https://doi.org/10.54216/JISIoT

Submit Your Paper

2690-6791ISSN (Online) 2769-786XISSN (Print)

Volume 1 , Issue 1 , PP: 61-69, 2020 | Cite this article as | XML | Html | PDF | Full Length Article

A Machine Learning Approach for Energy-Efficient IoT Systems

Mahmoud M. Ismail 1

  • 1 Faculty of computers and Informatics, Zagazig University, Zagazig, 44519, Egypt - (mmsabe@zu.edu.eg)
  • Doi: https://doi.org/10.54216/JISIoT.010105

    Abstract

     

    The energy challenge in IoT refers to the significant energy consumption of IoT devices, which can lead to sustainability issues, shorter battery life, and increased operating costs. IoT devices are known for their high energy consumption, and optimizing their energy usage can have a significant impact on sustainability and cost. Machine learning (ML) can learn from data and patterns to predict and control energy consumption in IoT systems, making them more energy efficient. The main contribution of this paper is the establishment of a novel deep learning framework for enhanced predictive modeling of energy consumption in IoT networks to help realize Energy-efficient IoT systems. our framework applies recurrent processing to capture long-term relations in the energy consumption of IoT appliances. Then, the self-attention mechanism is devised to help the model to focus on important predictive features.  Simulation experiments against the competing ML baselines demonstrate the predictive capability of our framework. 

    Keywords :

    Machine Learning , IoT , Energy Consumption, Sensors

    References

    [1].  Javed,  A.,  Larijani,  H.,  &  Wixted,  A.  (2018).  Improving  energy  consumption  of  a  commercial  building with IoT and machine learning. IT Professional, 20(5), 30-38.

    [2].  Ventura, D., Casado-Mansilla, D., López-de-Armentia, J., Garaizar, P., López-de-Ipina, D., & Catania, V. (2014).  ARIIMA:  a  real  IoT  implementation  of  a  machine-learning  architecture  for  reducing  energy consumption.  In Ubiquitous  Computing  and  Ambient  Intelligence.  Personalisation  and  User  Adapted Services:  8th  International  Conference,  UCAmI  2014,  Belfast,  UK,  December  2-5,  2014.  Proceedings 8 (pp. 444-451). Springer International Publishing.

    [3].  Chafii, M., Bader, F., & Palicot, J. (2018, April). Enhancing coverage in narrow band -IoT using machine learning. In 2018 IEEE Wireless Communications and Networking Conference (WCNC) (pp. 1-6). IEEE.

    [4].  Mahdavinejad, M. S., Rezvan, M., Barekatain, M., Adibi, P., Barnaghi, P., & Sheth, A. P. (2018). Machine learning for Internet of Things data analysis: A survey.  Digital Communications and Networks, 4(3), 161-175.

    [5].  Azmoodeh, A., Dehghantanha, A., Conti, M., & Choo, K. K. R. (2018). Detecting crypto-ransomware in IoT  networks  based  on  energy  consumption  footprint. Journal  of  Ambient  Intelligence  and  Humanized Computing, 9, 1141-1152.

    [6].  Shafique, M., Theocharides, T., Bouganis, C. S., Hanif, M. A., Khalid, F., Hafız, R., & Rehman, S. (2018, March). An overview of next-generation architectures for machine learning: Roadmap, opportunities and challenges  in  the  IoT  era.  In 2018  Design,  Automation  &  Test  in  Europe  Conference  &  Exhibition (DATE) (pp. 827-832). IEEE.

    [7].  Georgiou,  K.,  Xavier-de-Souza,  S.,  &  Eder,  K.  (2017).  The  IoT  energy  challenge:  A  software perspective. IEEE Embedded Systems Letters, 10(3), 53-56.

    [8].  Serra,  J.,  Pubill,  D.,  Antonopoulos,  A.,  &  Verikoukis,  C.  (2014).  Smart  HVAC  control  in  IoT:  Energy consumption minimization with user comfort constraints. The Scientific World Journal, 2014.

    [9].  Wei,  C.,  &  Li,  Y.  (2011,  September).  Design  of  energy  consumption  monitoring  and  energy-saving management system of intelligent building based on the Internet of things. In 2011 international conference on electronics, communications and control (ICECC) (pp. 3650-3652). IEEE.

    [10].  Luis M. Candanedo, Veronique Feldheim, Dominique Deramaix, Data driven prediction models of energy use of appliances in a low-energy house, Energy and Buildings, Volume 140, 1 April 2017, Pages 81-97, ISSN 0378-7788.

    [11].  Zuo, Y., Tao, F., & Nee, A. Y. (2018). An Internet of things and cloud-based approach for energy consumption  evaluation  and  analysis  for  a  product. International  Journal  of  Computer  Integrated Manufacturing, 31(4-5), 337-348.

    [12].  Kim, M., Jun, J., Kim, N., Song, Y., & Pyo, C. S. (2018, October). Sequence -to-Sequence model for  building  energy  consumption  prediction.  In 2018  International  Conference  on  Information  and Communication Technology Convergence (ICTC) (pp. 1243-1245). IEEE.

    [13].  Ullah,  I.,  Ahmad,  R.,  &  Kim,  D.  (2018).  A  prediction  mechanism  of  energy  consumption  in residential buildings using hidden markov model. Energies, 11(2), 358.

    [14].  Khan, S., Paul, D., Momtahan, P., & Aloqaily, M. (2018, April). Artificial intelligence framework for  smart  city  microgrids:  State  of  the  art,  challenges,  and  opportunities.  In 2018  third  international conference on Fog and Mobile Edge Computing (FMEC) (pp. 283-288). IEEE.

    [15].  Ejaz, W., Naeem, M., Shahid, A., Anpalagan, A., & Jo, M. (2017). Efficient energy man agement for the internet of things in smart cities. IEEE Communications magazine, 55(1), 84-91.

    [16].  Ouyang, Z., Sun, X., Chen, J., Yue, D., & Zhang, T. (2018). Multi-view stacking ensemble for power consumption anomaly detection in the context of industrial internet of things. IEEE Access, 6, 9623-9631.

    [17].  Kim,  J.  (2015).  Energy-efficient  dynamic  packet  downloading  for  medical  IoT  platforms. IEEE Transactions on Industrial Informatics, 11(6), 1653-1659.

    [18].  Sahana,  M.  N.,  Anjana,  S.,  Ankith,  S.,  Natarajan,  K.,  Shobha,  K.  R.,  &  Paventhan,  A.  (2015, December). Home energy management leveraging open IoT protocol stack. In 2015 IEEE Recent Advances in Intelligent Computational Systems (RAICS) (pp. 370-375). IEEE.

    [19].  Sehati, A., & Ghaderi, M. (2018, April). Online energy management in IoT applications. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 1286-1294). IEEE. 

    Cite This Article As :
    M., Mahmoud. A Machine Learning Approach for Energy-Efficient IoT Systems. Journal of Intelligent Systems and Internet of Things, vol. , no. , 2020, pp. 61-69. DOI: https://doi.org/10.54216/JISIoT.010105
    M., M. (2020). A Machine Learning Approach for Energy-Efficient IoT Systems. Journal of Intelligent Systems and Internet of Things, (), 61-69. DOI: https://doi.org/10.54216/JISIoT.010105
    M., Mahmoud. A Machine Learning Approach for Energy-Efficient IoT Systems. Journal of Intelligent Systems and Internet of Things , no. (2020): 61-69. DOI: https://doi.org/10.54216/JISIoT.010105
    M., M. (2020) . A Machine Learning Approach for Energy-Efficient IoT Systems. Journal of Intelligent Systems and Internet of Things , () , 61-69 . DOI: https://doi.org/10.54216/JISIoT.010105
    M. M. [2020]. A Machine Learning Approach for Energy-Efficient IoT Systems. Journal of Intelligent Systems and Internet of Things. (): 61-69. DOI: https://doi.org/10.54216/JISIoT.010105
    M., M. "A Machine Learning Approach for Energy-Efficient IoT Systems," Journal of Intelligent Systems and Internet of Things, vol. , no. , pp. 61-69, 2020. DOI: https://doi.org/10.54216/JISIoT.010105