American Journal of Business and Operations Research

Journal DOI

https://doi.org/10.54216/AJBOR

Submit Your Paper

2692-2967ISSN (Online) 2770-0216ISSN (Print)

Volume 8 , Issue 2 , PP: 25-35, 2023 | Cite this article as | XML | Html | PDF | Full Length Article

Seasonal Autoregressive Integrated Moving Average for Climate Change Time Series Forecasting

Basant Sameh 1 , Mahmoud Elshabrawy 2 *

  • 1 Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology, Mansoura 35111, Egypt - (basant.sameh25@gmail.com)
  • 2 Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology, Mansoura 35111, Egypt - (mahmoudelshabrawy662001@gmail.com)
  • Doi: https://doi.org/10.54216/AJBOR.080203

    Received: May 19, 2022 Accepted: December 19, 2022
    Abstract

    This study investigates the application of time series models, specifically ARIMA (Auto Regressive Integrated Moving Average) and SARIMAX (Seasonal Autoregressive Integrated Moving Average with eXogenous regressors), in the context of climate change. The ARIMA and SARIMAX models are mathematical methods that can be used to forecast future values of a time series related to climate change, taking into account trends and seasonality, as well as incorporating additional information through exogenous variables. The paper also delves into the mathematical foundations of the ARIMA and SARIMAX models, including the various operators used to eliminate trends, the use of lag polynomials to represent the autoregressive and moving average components of the model, and the incorporation of exogenous variables in the SARIMAX model. The study aims to provide a better understanding of the use of these models in analyzing and predicting the effects of climate change.

    Keywords :

    Forecasting , Time Series , ARIMA , SARIMAX , Climate Change

    References

    [1]  Federico, C., Massimiliano B., Wind speed and wind energy forecast through Kalman filtering of  Numerical Weather Prediction model output. Appl. Energy, 99, 154-166, 2012. 

    [2]  Wang H,  Huang J.,  Zhou H.,  Zhao L.,  Yuan Y.,  An integrated variational mode decomposition  and ARIMA model to forecast air temperature. Sustainability, 11(15), 2019.

    [3]  Kisi,  O.,  Cimen  M.,  Precipitation  forecasting  by  using  wavelet-support  vector  machine  conjunction model. Eng. Appl. Artif. Intell., 25, 783-792, 2012.

    [4]  Radhika Y., Shashi M., Atmospheric temperature prediction using support vector machines.  Int.  J. Comput. Theory Eng. , 1(1), 55-58,2009.

    [5]  Venkadesh S., Hoogenboom G., Potter W., McClendon R., A genetic algorithm to refine input  data selection for air temperature prediction using artificial neural networks. Appl. Soft Comput.,  13, 2253-2260, 2013.

    [6]  H. Nasser AlEisa, E. M. El-kenawy, A. Ali Alhussan, M. Saber, A. A. Abdelhamid et al., Transfer  learning  for  chest  x-rays  diagnosis  using  dipper  throated algorithm. Computers,  Materials  &  Continua, 73(2), 2371–2387, 2022.

    [7]  Abdelhamid AA, El-Kenawy E-SM, Khodadadi N, Mirjalili S, Khafaga DS, Alharbi AH, Ibrahim  A, Eid MM, Saber M., Classification of Monkeypox Images Based on Transfer Learning and the Al-Biruni Earth Radius Optimization Algorithm. Mathematics, 10(19):3614, 2022.

    [8]  Mohamed  Saber,  A  novel  design  and  Implementation  of  FBMC  transceiver  for  low  power  applications, IJEEI, 8(1), 83-93, 2020.

    [9]  Qiao B., Wu Z., Tang Z., Wu G., Sea surface temperature prediction approach based on 3D CNN  and LSTM with attention mechanism. In Proceedings of the 2022 24 th International Conference  on Advanced Communication Technology (ICACT), PyeongChang Kwangwoon_Do, Republic  of Korea, 342-347, 13–16 February 2022.

    [10]  Jeong S., Park I., Kim H., Song C., Kim H., Temperature prediction based on bidirectional long  short-term memory and convolutional neural network combining observed and numerical forecast  data. Sensors, 21, 2021.

    [11]  Cao  X.,  Zhong  Y.,  Zhou  Y.,  Wang  J.,  Zhu  C.,  Zhang  W.,  Interactive  temporal  recurrent  convolution network for traffic prediction in data centers. IEEE Access, 6, 5276–5289, 2017.

    [12]  Zhao L., Song Y., Zhang C., Liu Y., Wang P., Lin T., Deng M., Li H., T-gcn: A temporal graph  convolutional  network  for  traffic  prediction. IEEE  Trans. Intell.  Transp.  Syst., 21,  3848–3858,  2019.

    [13]  Liang S., Wang D., Wu J., Wang R., Wang R., Method of Bidirectional LSTM Modelling for the  Atmospheric Temperature. Intell. Autom. Soft Comput., 30, 701–714, 2021.

    Cite This Article As :
    Sameh, Basant. , Elshabrawy, Mahmoud. Seasonal Autoregressive Integrated Moving Average for Climate Change Time Series Forecasting. American Journal of Business and Operations Research, vol. , no. , 2023, pp. 25-35. DOI: https://doi.org/10.54216/AJBOR.080203
    Sameh, B. Elshabrawy, M. (2023). Seasonal Autoregressive Integrated Moving Average for Climate Change Time Series Forecasting. American Journal of Business and Operations Research, (), 25-35. DOI: https://doi.org/10.54216/AJBOR.080203
    Sameh, Basant. Elshabrawy, Mahmoud. Seasonal Autoregressive Integrated Moving Average for Climate Change Time Series Forecasting. American Journal of Business and Operations Research , no. (2023): 25-35. DOI: https://doi.org/10.54216/AJBOR.080203
    Sameh, B. , Elshabrawy, M. (2023) . Seasonal Autoregressive Integrated Moving Average for Climate Change Time Series Forecasting. American Journal of Business and Operations Research , () , 25-35 . DOI: https://doi.org/10.54216/AJBOR.080203
    Sameh B. , Elshabrawy M. [2023]. Seasonal Autoregressive Integrated Moving Average for Climate Change Time Series Forecasting. American Journal of Business and Operations Research. (): 25-35. DOI: https://doi.org/10.54216/AJBOR.080203
    Sameh, B. Elshabrawy, M. "Seasonal Autoregressive Integrated Moving Average for Climate Change Time Series Forecasting," American Journal of Business and Operations Research, vol. , no. , pp. 25-35, 2023. DOI: https://doi.org/10.54216/AJBOR.080203