Journal of Cybersecurity and Information Management
JCIM
2690-6775
2769-7851
10.54216/JCIM
https://www.americaspg.com/journals/show/838
2019
2019
A Novel Image Encryption with Deep Learning Model for Secure Content based Image Retrieval
BioImaging Lab, Department of Bioengineering, University of Louisville, Louisville, KY, USA
Mohamed
Elsharkawy
Department of Computer Science, American University in the Emirates, Dubai, United Arab Emirates
Ahmed N. Al
Masri
From the last decades, a massive quantity of images gets generated and continues to rise to a maximum extent in the forthcoming data. The process of retrieving images based on a query image (QI) is a proficient method of accessing the visual properties from large datasets. Content-based image retrieval (CBIR) provides a way of effectively retrieving images from large databases. At the same time, image encryption techniques can be integrated into the CBIR model to retrieve the images securely. Therefore, this paper presents new image encryption with a deep learning-based secure CBIR model called IEDL-SCBIR. The proposed IEDL-SCBIR technique intends to encrypt the images as well as securely retrieve them. The proposed IEDL-SCBIR technique follows a two-stage process: optimal elliptic curve cryptography (ECC) based encryption and DL based image retrieval. The proposed model derives a cuckoo search optimization (CSO) with the ECC technique for the image encryption process in which the CSO algorithm is applied for optimal key generation. In addition, VGG based feature extraction with Euclidean distance-based similarity measurement is applied for the retrieval process. To validate the enhanced performance of the IEDL-SCBIR technique, a comprehensive results analysis takes place, and the obtained results demonstrate the betterment over the other methods.
2019
2019
54
64
10.54216/JCIM.000105
https://www.americaspg.com/articleinfo/2/show/838