Journal of Cybersecurity and Information Management JCIM 2690-6775 2769-7851 10.54216/JCIM https://www.americaspg.com/journals/show/3207 2019 2019 E-mail Classifications Based on Deep Learning Techniques Computer Department, College of Science University AL-Nahrain, Baghdad, 10001, Iraq Sarah Sarah Computer Department, College of Science University AL-Nahrain, Baghdad, 10001, Iraq Abdulkareem Merhej Radhi Email types sorting is one of the most important tasks in current information systems with the purpose to improve the security of messages, allowing for their sorting into different types. This paper aims at studying the Convolution Neural Network and Long Short-Term Memory (CNN-LSTM), Convolution Neural Network and Gated Recurrent Unit (CNN-GRU) and Long Short-Term Memory (LSTM) deep learning models for the classification of emails into categories such as “Normal”, “Fraudulent”, “Harassment” and “Suspicious”. The architecture of each model is discussed and the results of the models’ performance by testing on labelled emails are presented. Evaluation outcomes show substantial gains in precision and throughput to conventional approaches hence inferring to the efficiency of these proposed models for automated email filtration and content evaluation. Last but not the least, the performance of the classification algorithms is evaluated with the help of parameters like Accuracy, precision, recall and F1-Score. From the experiment, the models found out that CNN-LSTM, together with the Term Frequency and Inverse Document Frequency (TF-IDF) feature extraction yielded the highest accuracy. The accuracy, precision, recall and f1-score values are 99. 348%, 99. 5%, 99. 3%, and 99. 2%, respectively. 2025 2025 385 395 10.54216/JCIM.150130 https://www.americaspg.com/articleinfo/2/show/3207