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Abstract

It is shown that if A4, B,X’, and )/ are operators acting on a finite dimensional Hilbert space, then

wy (AXB* + BYAY)

coasa ([ 4 3]).

where w,, (T), || T||, are, respectively, the U-numerical radius, the spectral norm, of an operator 7.
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1 Introduction

Let B(#(™) be the C*-algebra of all operators on an n-dimensional Hilbert space H(™). The singular values

51(X),52(X), ..., 5,(X) of an operator X €B(H (™)) are the eigenvalues of (X*X) 1/2 presented in decreasing
order and repeated based on multiplicity.

The spectral norm ||-|| is the norm defined on B(#(™)) by

1] = sup{||Xz|| : 2 € H™, 2] = 1}.

For 1 < p < oo, the Schatten p-norm ||-|, is the norm defined on B(H™) by
[, = (s )"
In particular, when p = 2, the Schatten 2-norm ||-||,, is called the Hilbert Schmidt norm. In fact,
il = tr (1277)
where tr (-) is the trace functional defined on B(H (™).
The Ky Fan k-norms ||| is the norm defined on B(H(")) by
1] gy =521 51(X) for k= 1,2,...,n.
In fact, one can see that [ X'[| = [|X] ;) and [|X|[, = [|X]|,,,.
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A unitarily invariant norm on B(#H (™)), written as |- ||,.» is a norm satisfying the invariance property
leexvl,, = 1],

for every U,V,X €B(H (™) such that i and V are unitaries. It is known that the spectral norm, the Schatten
p-norms and the Ky Fan k-norms are typical examples of unitarily invariant norms.

One of the interesting properties that relate to the Ky Fan k-norms and the unitarily invariant norms is Fan
Dominance Theorem (see, e.g., [S, p. 93]) which says the following: Let A,B € IB%(H(”)). Then

[All gy < 1Bl (g fork =1,2,...,n

iff
Al < 11BIl,

for every unitarily invariant norm |-||,,. Moreover, it is known that (see, e.g., [S, p. 93]) if A € B(H (™), then
Al < 1IAll, (D
for every unitarily invariant norm ||-||,,.

The numerical radius w(-) of an operator X in B(# (™)) is defined by
w(X) = sup{|(Xa,a)| : a € H™, ||a] = 1}, (2)

where (-, -) is the inner product defined on H ™). In fact, w(-) defines a norm on B(# (™)), which is equivalent
to the spectral operator norm ||-||, that is if X €B(#H (™)), then

1
SI¥) < w(@) < 1X]]

810 and references therein.

For more details on the numerical radius, we refer the reader to,””
Some of the inequalities for the numerical radius of operators that we are interested in are the following:® If
AB.X € B(H(™), then

w(AB+ BA) < 2V2||B||w (A) 3)

and

wATX+XA) <2||A||w(X). 4)

Generalizations of inequalities and (4) have been given in'Z It has been found that if A,B,X,) € IB%(”H(")),
then
w (A" XB £ B XA) < 2| A |B]lw (X). )

One of the interesting characterizations of the numerical radius has been given in” as follows: If X €B(H (™),
then
w(X) = sup||Re (ew?{) || = sup |[Im (ewX) Il
9eR 0ER

. 6 —1i60 . 6 —16 qrx
where Re (e”’z’\,’ ) = % and Im (e”’X ) = % This characterization attracted several
mathematician and motivated them to define some considerable generalizations of the numerical radius of
operators. One of these generalized numerical radius (see, e.g.,) which is called the generalized N-numerical
radius, which asserts the following: Let N(-) be a norm on B(H(™)). Define the generalized N-numerical
radius radius on B(# (™)) by
wn (X) =sup N (Re (ewX)) .

0cR
When N(-) = ||-||,, the generalized N-numerical radius is called the generalized 2-numerical radius (or the
Hilbert Schmidt numerical radius) which is written as

wa(X) = Z,Lelg | Re (eieX)Hg.
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In this paper, we emphasize our selves to the N-generalized numerical radius in the case when the norm N(-)
is unitarily invariant and we call it as the generalized U-numerical radius. So, let ||-||,, be a unitarily invariant
norm on B(# (™). Define the generalized U-numerical radius w,(-) on B(H (™)) by

wy (X) = sup |Re (e X)||, for X € B(H™). (6)

Equivalently,

wu(X) = slelg || Tm (ewé’()Hu for X € B(H™).

It is in clear view w,,(-) is a norm on B(# (™)) which is not unitarily invariant, it is weakly unitarily invariant,
that is
Wy (UXU™) = wy, (X)

for each U, X € B(H (™) such that I/ is unitary. Also, it can be seen that if X € B(#(™)) is Hermitian, then
wy (X) = [|X]],,
The triangle inequality for w,, (-) is given by
W (X 4+ V) <wy(X) + wyu (V) 7
for XY € B(H™).

In this paper, we give inequalities for the generalized U-numerical radii. In Section 2, we introduce a gener-
alization of inequality (5)) in terms of the generalized U-numerical radii. In Section 3, we are interested in the
generalized 2-numerical radius of operators.

2 Generalized U-numerical radius of the operator AXB* + BY A"

In this section, we introduce a generalization of inequality (3] in terms of the generalized U-numerical radius.
In this approach, first we show the following lemma in order to obtain our main .

Lemma 2.1. Let A, X € B(H™). Then
wo (AXA") < JA* wu(X).

Proof. It can be inferred from the fact || Re (e’ (AXA%))||, = ||ARe (e X) A*

that
u

|[Re (e (AXA%))|| < [IA|I° || Re (e X)

So,
wy (AXA") = sup||Re(e” (AXAY))]|,
0ER

IN

HU

sup || A||* || Re (e"X)
0ER

= A wu(X).

The main result of this part, which presents a generalization of inequality (3)) is as follows: This result

Theorem 2.2. Suppose that A, B, X,Y € B(H™). Then

(a)
wu (AXB + BYA") < 2| Al| |1Bl| w. ({ v D

More precisely, if we consider B = Z,,, we have
suar £y <2dle (| 5 5 ]).
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(b)
wa (AXB* £ BXA") < 2||A|l | Bl wa (X ® X).

In particular, letting B = Z,,, we have

Wy (AX £ XA <2 Al wy (X & X).

Proof. LetT = [ J(‘)l lg } and £ = [ ;)} i)( } Then w,, (AXB* + BYA") = w, (TET*). Using Lemma
2.1] we get
wy (AXB* + BYA") = w, (TET*) < |T||* w, (E). (8)
Since
IT|* = [AA"+BB*|| < [lA]* +B]* ©)
It can be inferred, from inequalities (8) and (9), that
* * 2 2 0 X
w0 (AXB* 1+ BYA) < (JAI + B?) o ([ 00 D . (10)
Now, in the inequality , a substitute of .4 and B by t.4 and 1B, respectively, in which ¢ = % implies
that
1 0 X
* * 2 2 - 2
wu (X8 5v4) < (1A 515w (| 3 7 |)
0 X
= 248t (| 3§ ) 1)

On the other hand, in inequality (TI)), replacing A by i.4 implies that
wy (AXB* — BYA*) < 2||A|l |1B]| wu ([ v 0 }) : (12)

Part (a) follows from inequalities (IT) and (T2).
For part (b), it can be seen that

wolw 0 ]) = qmlre (el v 7)),

_ 0 Re (e X)
= enl|| Re(e?x) 0

u

~ [ Re (¢"X) 0 ]
T en 0 Re (¢X)

= sup|||Re (ew (XEBX))W
0eR

u

— b (X e X). (13)
Now, part (b) follows from part (a) by setting ) = X and then using identity (I3). O

Remark 2.3. We can easily show that

0o X _ 1 10~ )% 16 %
Wu(|:y 0])—2‘22@[(/‘(—&-6 V)o (X +e y)||u (14)
So, our result in Theorem a) can be formulated as follows: If A, B, X, ) € B(H (™), then
wy (AXB* £ BYA) < ||A| |B]| sup || (X + V") @ (X +°VY)]], - (15)
0cR

An application of Theorem 2.2fa) is the following.
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Corollary 2.4. Let A € B(H™). Then

max (|| Re A, |

ImA?(|,) < Al ||A® Al

Proof. In Theorem[2.2)(a), replacing B, X', and Y by Z,,, A, and A*, respectively, we have

s xa?) <2Alen (| 4 0 ]) 16
and observing that
wo (A2 4 A2) = 2||ReA?||, w, (A2 — A%2) = 2| ImA2||, an
and
al| 4 0 ]) = l4sal. as
The result is determined by the inequality and identities and (I8). O

Observe that if 4,B,X € B(H(”)), then
[AXB|,, < Al B[ X, 19)

for every unitarily invariant norm ||-|| ,. Another consequence of our inequality given in Theorem b) can
be presented as follows.

Theorem 2.5. Let A, B, X € B(H™). Then
u (AXB" £ BYA®) < 2| ] [B] w ().

In particular,
wy (AX £ X A") < 2| Al wy (X).

Proof. We have
wy (AXB* + BXA") = sup ||Re (e (AXB* + BXAY))||,

= SZE ||A(Re (" X) B* + B(Re (" X) A*

sup (|[A(Be (¢) B[+ [|B(Re () A

M

IN

(by the triangle inequality)
21|Al 1Bl Sug || Re (eia)() | |u (by inequality (I9))
€

= 2[| A8 wu ().

IN

Now, we equire the following result.’

Lemma 2.6. If X, Y € B(H(™) are positive with a complex number . Then
X+ 2V, < X+ 2]V,

for each unitarily invariant norm ||-||,,.

A concrete result that can be inherited from inequality (I3 is the following.

Corollary 2.7. If A, B, X,Y € B(H™) in which X and Y are positive. Then
wy (AXB" £ BYA") < [|A]l Bl [|(X +Y) & (X + V)],
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Proof. 1t can be seen that

(X +e?Y) @ (X + )|, <X+ V)@ (X + V)|, (by Lemma[Z6).

Thus,
sup || (X +¢*Y) @ (¥ + D) || < (X + ) @ (X + VI (20)
€

Through the utilization of inequalities (I5)) and (20) we obtain a result. O

The following result gives an explicit formula for the generalized U-numerical radii of the off-diagonal parts
of a 2 x 2 operator matrix when the these off-diagonal parts are positive.

Proposition 2.8. Let X,) € B(H ™) be positive. Then

w([§ 7)) = MxENE XD,

Proof. Tt can be inferred from the definition of w,, (-) that

[y 0]) = smlle(]5 7))
S

u

Y

-3ty 07 .
_ @+ e (X'Fy)”u. 1)
2
Also,
0 X B ol 0 x
(35 ]) = sl (e [5 DI.
1 [ 0 ef?X +e 0y
= 2;1612 I e~ 0 x + eiGy 0 .
_ L |[[x+ety 0
o2l o X +efy
_ 1 X 0 wo| Y 0
=l [0 w0 [n 5]
X+Yy 0
< —
< 5 [ 0 X+y”L (by Lemma[2.6)
X X
_ X+ e X+ D, 22)
2
So, the result is determined by inequalities (ZI)) and (22). O

Remark 2.9. According to Proposition if X € B(H™) is positive, then

1
w([g ﬂ):ZIX@XIu 23)

(| 5 ])-1xen.. 24)

and

DOI: https://doi.org/10.54216/1JNS.260221 284



International Journal of Neutrosophic Science (IJNS) Vol. 26, No. 02, PP. 279-291, 2025

In fact, the identities (23) and (24) are not only true when X is positive but they are also true for general
operators. This can be demonstrated as follows:
0 X
w([5 3 ]l

0 0 0ER
[ 0 e x }
e—ié’X* 0

0 X
X0 ],

1
= sllxex|,,

u

2

this proves identity (23] for general operators. The proof of identity (24) is similar.
Moreover, we have obtained the following result.

Corollary 2.10. Let A, X,Y € B(H™) in which A has the Cartesian decomposition Acal=A;cal+iB; with
real numbers a1, as, by, and by where aqy < Ay < ag and by < Ay < by. Then

(@)
wy(AX —YA") < (a2 —a1+ba —b1)wy ({ S)) /g })
wwuw—y) 4 Lo +b2‘wu(é\f+y).

When considering Y = X, we see that
wu(AX - X.A*) < (a2 — a1+ by — bl) ||X D XHu + |b1 + b2|wu(2€)

(b)

wy (AX — YA*) < <a2a1+bgb1+\/(a1+a2)2+(b1+b2)2) Wy <[ ; )0( D

When considering Y = X', we see that

wy(AX — X A") < (02 —a;+by—b1 + \/(a1 +02)2 + (b1 + b2)2> XX, -

Proof. If x = a + ib, where a = % and b = %, then

A —al| < 2= and || A, — 0] < ngbl.
o by — b
— + —_
A = afl < i = all + |4 - b < B—Ho 2 25)
Consequently,
% 0o X
wy (A=) X =Y (A—-2)) < 2|A—2|wy ({ Y 0 }) (by Theorem [2.2](a))
X
< (62a1+b2b1)wu({§)} 0 ]) (26)
(by inequality (23)).
Also, we have
Wy (AX = YA = w(A-2)X -YV(A—2)" +2X —z))
< w(A=2) X = YV(A—-2)") +w,(zX —ZY). 27
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For part (a): Observe that,

wy (X —2Y) = wula(X =Y)+ib(X+D))
< alwu (X = Y) + bl we (X + )
= L-;aﬂw”(x -Y)+ L—;bﬂwu(x + ). (28)

Now, part (a) follows from inequalities (26), (27), and (28).
For part (b): Observe that,

wu(zX —2Y) < 2|z|w, <[ 3)) /’(Y }) (by Theorem [2.2)(a))
0 X
= \/(a1 +az)” + (b1 + ba)’w, ([ v 0 D : (29)
Hence, the result can be deduced from the inequalities (26)), (27), and (29). O

Remark 2.11. Using a similar argument to the one employed in the proof of Theorem one can have
another results related to the particular cases of Corollary These results can be stated as follows:
IfA X € IBS("H(”)) in which A has the Cartesian decomposition Acal=.A4;cal+i3; and a;, aq, b1, and by are
real numbers for which a; < A; < as and by < Ay < by. Then

(a)
Wy (AX — XA*) < (ag — a1 + by — b1 + b1 + ba]) wu (X).

(b)

wu(.AX — XA*) < (CLQ — a1 +by— by + \/(&1 + a2)2 + (b1 + b2)2> wu(X)

Corollary 2.12. Let A, X,Y € B(H"™)) in which A is Hermitian, and there exist real numbers a; as such
that a; < A < ay. Then

(a)
la1 + az|

B) wg(.)(—y).

Wy (AX — VA) < (az —a1) wy ({ ; /’(L)/ ]) +
In particular, put Y = X', we obtain

wy(AX = X A) < (a3 —a1) X @ X,

and
wy(AX — X A) < (a2 — a1) wy(X)
(b)
0 X
Wy (AX — Y A) < 2max (az, —a1) wy <{ y 0 }) .
Proof. By considering b; = by = 0 in Corollary we can deduce the results. O

Remark 2.13. By employing an argument analogous to the one utilized in the proof of Theorem 2.5] one can
show the following: If A, X € B(H (™) for which A is Hermitian and there exist real numbers a; as such that
a1 < A< as. Then

Wy (AX — X A) < (ag — a1) wy (X).
The result below is directly derived from a Corollary 2.12]
Corollary 2.14. If A, X € B(H™) in which A is positive. Then

Wy (AX — X A) < || Al wy (X) .

Proof. Since0 < A <A

, take a1 = 0, ag = ||.A|| and then apply Corollary O
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3 The generalized 2-numerical radius of operators

This section aims to give some bounds and demonstrates several novel inequalities and equalities for the
generalized 2-numerical radius. First, to attain our aim, we require the following two Lemma (seel).

Lemma3.1. If X, Y, Z,W € B(H™). Then

wa (|G y|) < vaE@TID

(b) wy <§)} %KD 2 (X+Y) +w2(X y)

@ (|3 3{,}) VB + S IVIE + /w300 + 31215,
@ m(iﬁf %’D + LI

(e)wQ<:§f 22]) VEBE )+ 3(X - ).

N

Lemma 3.2. [fX,) € B(H™). Then

(@) wy(X) = @

® 751X+ Vlly < ws ({ 39 ff D

© qu N H) = V2|,

Remark 3.3.

(a) Itisin clear view from Lemma a) that if X € B(H (™), then

[l
V2

w(X) > (30)

with equality if and only trX? = 0.

(b) One of the basic facts is the following, which can be proved by direct computations: If X € B(H(™),
then
1215 = (| Re ()5 + [[Tm ()3 - 3D

Our first result of this section can be regarded as a refinement of inequality @

Theorem 3.4. Let X € B(H™) and suppose that v, = |||ReX | — , Ty = ‘HImX”2 , 81 =
maX{HReXH;, H);Hg }, and sg = max{HlmXHg, H);H"’ } Then

||X||§ n ri+ry |51 — sa
4 2 )
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Proof. Since
2
113

W3(X) 2 |ReX |3, w3(X) > [ImX]||;, and w3 (X) > 2572,

we have
w3(X) > max{si, s}
1 1
= S ts2)+5ls1— s

2
. + _
= Z (HXHE + ||R€X||§ + ||ImX||§) + 1 : T2 I |81 > 52|

X3 -
[Xz | ratra s . 52l by identity @T))

2 4

In the following Corollary, let r1, r2, 51, and s be as given in Theorem@

Corollary 3.5. If X € B(H™) in which wy(X) = 1712 Then
(@) [tr&?| > D2 4 [s) — sl

) If ws(X) = 122 then | X, = V2 |[ReX |, = V2 | ImX]|,.

Proof. Part (a) can be obtained from Lemma a) and Theorem For part (b), observe that wo (X) =
together with Theorem [3.4]implies that r; =75 = 0, and so

1%y = V2||ReX |, = V2| ImX],.
O

In the rest of this section, we are devoted to the generalized 2-numerical radius of 2 X 2 operators matrices.
The text begins with a result related to the inequalities of Lemma @b) and (e).

Theorem 3.6. If X, € B(H™). Then

X
o ([ 5 2 ]) = 0t + W18+ [20meci + 1918 - 1]

Proof. Let L = [ ; )g)* ] Then
ILI; = tr(L*L)
= (XX + VY + XX+ YY)
= 2r(X*X + YY)
= 2(|X05 + |1VII3) (32)
and
tr (L) = [tr (X2 + YY" + Y'Y+ x|

= [tr(X?) + 2tr(YY*) + tr(X*?)|
= [tr(X + X%+ 2tr(YY*) — 2tr(XX¥)
[tr(X + 27)2 + 20913 - 21113

2|2 | Re |3 + V113 - 213 (33)
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Using Lemma[3.2]a), we have

w2 (L)

1, 5 1
VI + ez

IR+ 121 + 2o + I - )
(by relations (32) and (33)).

Theorem 3.7. Suppose that X,Y, Z, W € B(H™). Then

([ 5 0]) < b0+ + vl + 12100

Proof. Let L = [ ; )3;\/ ]andM = X012+ Y12 + || Z]2 + W] . Now, by Lemmaa) we have

w3 (L)

1 1
5 LI + = \trL2|

%MJF |tr( X2+W2+yz+zy)\
< %M + 5 (@) + 5 Ll ov)| + 1t (2)].

Since [tr(YZ)] < || V|5 [| 2|5, it follows that

IN

Wi(L) < M+ |t (x? \+ [trW?)| + VIl 11211,

and so
1
WA(L) < W3(X) +BOV) + 5 (VI + 1215+ 2190, 1215)
Hence, )
Wi (L) < w3 (X) +wi(W) + 5 (Ml + 1Z1,)*.

Theorem 3.8. If X, Y, Z, W € B(H™). Then

(|3 o ]) =it

where ( = \/—-l- (w2 (V+2)+w2 (Y- Z))andn—\/w2 + 3 1Vl5+ \/W2

Proof.

IA
S
N

(2 w]) = (s
(L

A
£
[\VIN)
=
Jr
£
[ji)
=
_|_

Also, using Lemma[3.T{c), we get

Hence, wo ({ )Z( 3}\/ }) < min {¢, n}.
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This part is concluded with the following result.

w ({ ;‘ = D < min{\ 9, p},

where X = 20/ (X) + L VI3 0 = \[B(X) + w3 (V) + (1X], + IV],)2 and o = VE (VB (E) + Ve30))

Theorem 3.9.

Proof. IfU = { ? é ] Then U is unitary, and so

[y Z]) == T )
=l 3]s 2 )
el Vel [s 2
([0 )= (5 7))

1 2
N R I

Using Theorem (3.7)), we get

w(3 D) < Ve L+ 1x1?
= /B +W3X) + SVl + 1¥]5)2
= 4.
Moreover,
(3 7)) =0 2] )
< ([0 x])r (5 7))
- ([0 2 ]) (5 7))
< VE(\RD) +vaEw)
= VE( )+ i)
o
Hence,
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