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1. Introduction 

Despite the recent rise in popularity of neural network models, tree-based approaches like Decision Trees and 

Random Forests are still widely used for metadata jobs. These approaches provide numerous benefits, such as the 

capacity to manage various attribute classes, resilience to data volume, and ease of feature extraction [1]. Neural 

network architectures such as CNN are preferred when dealing with spatial information in input data [2]. These 

architectures can make task-specific assumptions, reducing the need for domain-specific expertise in certain 

applications like image categorization [3-4]. However, traditional Fully Connected Networks (FCNs) lack inherent 

biases towards high-dimensional raw data, posing challenges in developing DNNs using tree-based methods [5]. 

Numerous systems continue to depend on conventional DT learning loops, and there is currently no broadly 

recognized neural architecture that seamlessly integrates tree-based approaches [6]. This knowledge gap raises 

questions about the general applicability of neural architectures in various contexts. CNNs excel at identifying 

objects based on salient characteristics, making them ideal for large-scale image categorization tasks [7].  

Supervised training on a large dataset of labeled images is the primary method used to train CNNs to recognize 

objects. The network learns distinctive features from labeled images over time, gradually acquiring knowledge 

and adapting to new information as it becomes available. When a segment of the feature space undergoes 

modification, CNN quickly updates the entire structure by integrating feature extraction and categorization [8]. 
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Abstract 

The representational and learning power of tree-based deep-learning (DL) classification models makes them a 

popular choice for dimensional sentiment analysis (DSA). One variant, Tree-structured Convolutional neural 

network with long short-term Memory (TCL) stands out among many others for its ability to handle 

uncertainties and unexpected changes in input data while still producing promising Valence-Arousal (VA) 

predictions for text or image classes. However, the high memory complexity of this model becomes a challenge 

when dealing with large image/text datasets. To address this issue, this manuscript introduces a Lightweight 

Adversarial Attention TCL (LAATCL) model for DSA. The proposed model includes a clustering layer in 

conjunction with the ATCL to decrease memory complexity and enhance performance through reliable sample 

selection. This model comprises multi-convolution with a clustering layer that utilizes Group-Sparse Non-

negative Matrix Factorization (GSNMF) for clustering highly correlated samples. By learning informative and 

discriminative latent variables across labels, GSNMF helps identify and select samples closest to the cluster 

centroid for input to the LSTM network, resulting in reduced memory complexity and improved accuracy. The 

LATCL model outperformed traditional models in experiments conducted on the SST and CIFAR-10 datasets, 

with accuracies of 93.57% and 95.25%, respectively, demonstrating its usefulness. 
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However, iterative learning poses a risk of permanent information loss. Retrained CNNs need to leverage historical 

data to update current knowledge. To tackle the issue of catastrophic forgetting and leverage previously obtained 

characteristics, an adaptive hierarchical network called Tree-CNN (T-CNN) [9] was developed. The T-CNN 

network is composed of CNNs that grow gradually and acquire new labels. Its hierarchical architecture, extended 

with feature-sharing-based branching, can accommodate additional labels as nodes. By focusing on leaves grouped 

into coarse super-classes by early nodes, the network achieves better classification. While the enlarged network 

can easily incorporate pre-trained convolution layers, it faces challenges in acquiring task-related texts that possess 

the required attributes. Afterwards, in an effort to improve the level of detail in dimensional sentiment analysis, 

the T-CNN-LSTM model, abbreviated as TCL, was presented [10] to forecast VA sentence scores by combining 

regional CNN and LSTM. 

 The CNN divides the text into segments and allocates weights according to their significance in forecasting VA, 

whereas the LSTM compiles data to estimate VA for each segment. It employs a region division approach to 

identify task-related expressions and clauses, considering global text linkages and local information. Although it 

uses structured data for VA classification, it does not address feature learning complexity, lesser prediction rates, 

or class changes.  

To overcome the above challenges and enhance VA classification efficiency in DSA, this article proposed 

LAATCL model for DSA. It includes a clustering layer that enhances performance by reducing memory 

complexity and improving sample selection. This model combines multi-convolution with a clustering layer using 

the GSNMF to cluster highly correlated samples. GSNMF helps identify and select samples closest to the cluster 

centroid, improving accuracy and reducing memory complexity in the LSTM network. Here is the structure of the 

sections that follow: Section II offers a synopsis of the previously published works. In Section III, LAATCL is 

detailed. In Section IV, we detail the results of the experiments. The investigation is concluded and future 

enhancements are proposed in the last section. 

2. Literature Survey 

A few earlier studies on tree-based DL techniques for various purposes are reviewed in this section. He et al. [13] 

presented a novel hybrid ensemble model to enhance default prediction performance. They utilized Light Gradient 

Boosting Machine (LightGBM) for learning new feature interactions, CNN for generating deeper feature 

interactions, and an Inner Product-based Neural Network (IPNN) as a classifier. The ensemble approach combined 

deep learning and tree-based classifiers for final predictions. However, it had low prediction accuracy and high 

memory requirements. A Tree-RNN algorithm [14] was used to categorize network traffic more effectively. It uses 

a binary tree structure with classifiers for classification and traffic splitting rules. Due to unbalanced datasets, the 

results were not highly reliable.  

Zang et al. [15] developed a tree-based ensemble deep learning model called semi-SILDM for O3 prediction by 

extracting spatiotemporal features from the MODIS data. However, scaling up the data requires additional 

memory. Aouedi et al. [16] introduced a novel deep-learning approach that combines multiple decision tree-based 

models in an ensemble. The ensemble includes two levels: base classifiers using decision tree models in the first 

level, and a deep learning meta-model in the second level to integrate the base classifiers' outputs. However, it has 

a high memory complexity and challenges in selecting appropriate classifiers for level 1. 

Khozeimeh et al. [17] introduced the RF-CNN model for coronary artery disease detection using cardiac magnetic 

resonance imaging. They utilized CNN to extract relevant information from low-dimensional image copies and 

integrated these features into DTs for classification. Yet, its high memory consumption remained a limitation 

despite its enhanced capabilities. In order to improve cloud computing is power efficiency and provide workload 

predictions, a method called Hierarchical T-CNN (HT-CNN) [18] was created employing sheep flock 

optimization. . However, the algorithm struggled to adapt to sudden changes in input data, affecting its memory 

requirements. 

Cai et al. [19] developed a tree-structured model that eliminates variance differences among clusters. It 

automatically constructs a primary classification tree using a clustering technique to group similar subtypes and 

applies a pruning rule to refine the tree structure. However, it has high memory requirements. Arifuzzaman et al. 

[20] developed a novel approach that combines DT and DNN to classify nonlinear data. At first, a DT-Based 

Neural Network (DTBNN) model was designed and then stretched it to DTBDNN with multiple hidden layers. 

However, the accuracy of the model was low and it was unable to handle an expansion in features.  

3. Proposed Methodology 

An extensive explanation of the LAATCL model is given in this section. The pipeline for this study includes 

SFGAN and LAATCL, as shown in Figure 1. Initially, the SFGAN [11] is employed to enhance the training data 

through the generation of supplementary adversarial samples. Following this, the enhanced data is utilized to train 
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the LAATCL model. The model undergoes evaluation with test data to forecast VA ratings for textual content or 

to categorize image classes. 

 

 

Figure 1. Conceptual Overview of this Study 

A. Unsupervised CNN Clustering for sample selection using GSNMF 

To reduce the memory requirements, the A Tree-RNN network integrates unsupervised T-CNN with GSNMF 

clustering as depicted in Figure 2. The network is divided into representation learning (T-CNN) and clustering 

modules. The representation learning includes unsupervised T-CNN with multiple convolution layers and one 

clustering layer. It consists of 5 convolutional layers (Conv1 – Conv5) followed by a clustering layer with 𝑐 

clusters. Examine an 𝑀-dimensional random vector x characterized by positive or zero components, such as the 

convolutional features. The vector has 𝑁 observations denoted as 𝑥𝑖 , 𝑖 = 1, … , 𝑁, here 𝑁 represents batch size. 

The feature matrix is represented as 𝑋 = [𝑥1, … , 𝑥𝑁] ∈ ℝ≥0
𝑀×𝑁. NMF aims to find a positive or zero basis matrix 

𝑊 ∈ ℝ≥0
𝑀×𝐿 and a coefficient matrix 𝐻 ∈ ℝ≥0

𝐿×𝑁 that minimizes the difference between 𝑋 and the product of 𝑊 and 

𝐻, as: 

𝑋 ≈ 𝑊𝐻                                                                                  (1)    

Mostly, the count of latent variables (𝐿) is relatively smaller than the minimum of the dimensions of the input 

matrix (𝑀,𝑁). Traditional NMF is effective at identifying informative latent variables. However, in large DNNs 

like CNN and LSTMs, there are often redundant and highly correlated units. To tackle this challenge and identify 

a set of related CNN features, further group-sparsity constraints are introduced to NMF. The elastic net 

regularization, which integrates 𝑙1 and 𝑙2-norm penalties, is commonly used for group-sparse regularization. The 

𝑙1 penalty promotes sparsity in the model, while the 𝑙2 penalty encourages a smoothing and grouping effect.  

By applying a weighted combination of 𝑙1 and squared 𝑙2 penalties to 𝐻, CNN can efficiently select features that 

are correlated with the target data while eliminating those that are uncorrelated. The group-sparsity characteristic 

facilitates the attainment of the intended group-sparse representations. The objective function resulting from 

GSNMF is articulated as follows: 

𝑓(𝑊,𝐻) =
1

2
‖𝑋 −𝑊𝐻‖𝐹

2 +
𝜆1
2
‖𝐻‖2

2 + 𝜆2‖𝐻‖1, 𝑠. 𝑡.𝑊,𝐻 ≥                (2) 

In Eq. (2), 𝜆1 and 𝜆2 represent the hyperparameters that control the significance of 𝑙1 and 𝑙2 regularization terms. 

(i) Optimization 

Incorporating group-sparsity into 𝐻, the alternating minimization method and multiplicative updating rule improve 

Eq. (2). The ideas used in conventional NMF are still applicable to the W update rule. H is optimized by gradient 

descent, which is subject to a first-order update rule expressed as 

𝐻 ← 𝐻 − 𝜂 ∗
𝜕𝑓(𝐻)

𝜕𝐻
                                                                (3) 

In Eq. (3), ∗ stands for the multiplication of elements one by one, while the matrix 𝜂 represents the size of the 

steps.  Calculating the derivative of 𝑓(𝐻) in Eq. (3) using H as an input yields   
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𝜕𝑓(𝐻)

𝜕𝐻
= −𝑊𝑇𝑋 +𝑊𝑇𝑊𝐻 + 𝜆1𝐻 + 𝜆2𝐼                            (4) 

In Eq. (4), the symbol I stands for an all-one matrix with the same dimension as 𝐻. Eq. (4) is the sub-gradient at 0 

since the l𝑙1-norm is not discriminable at 0. Next, think about the adjustable step size 𝜂 as: 

𝜂 =
𝐻

𝑊𝑇𝑊𝐻+𝜆1𝐻+𝜆2𝐼
                                                                     (5)     

In Eq. (5), the division is element-wise. After that, the below update rule is obtained. 

{
 
 

 
 𝑊 ← 𝑊 ∗

𝑋𝐻𝑇

𝑊𝐻𝐻𝑇

𝐻 ← 𝐻 ∗
𝑊𝑇𝑋

𝑊𝑇𝑊𝐻 + 𝜆1𝐻 + 𝜆2𝐼

                                             (6) 

In Eq. (6), 𝐻 denotes the novel feature representation. Eq. (6) is a simple change to the typical NMF optimization’s 

multiplicative update rule. Since the update rules are multiplicative, the non-negativity of 𝑊 and 𝐻 is preserved if 

they are initialized as non-negative. 

(ii) Unsupervised Fine-Tuning of CNN Using GSNMF 

Figure 2 shows that, in contrast to supervised fine-tuning, which makes use of the conventional cross-entropy loss, 

unsupervised fine-tuning makes use of the data instance reconstruction loss from Eq. (2).  Typically, the CNN 

stays frozen during training and the GSNMF takes over.  When the fine-tuning scenario is in play, the GSNMF 

gets to work improving the CNN model.  Consistent with conventional NMF approaches, this research uses extra 𝑙2  

normalization layers on 𝑋 and the basis matrix 𝑊 before the factorization layer. Normalizing the feature vector 

norm is a widely adopted approach in unsupervised learning, aimed at avoiding degenerate solutions and 

preventing the collapse of networks. 

The CNN activations 𝑋 are retrieved from the mini-batch in every iteration after forward propagation.  The value 

of N=128 selected as the mini-batch scale.  The update rule in Eq. (6) is used to acquire 𝑊 and 𝐻 initially.  A 

conventional Euclidean loss, denoted as ‖𝑋 −𝑊𝐻‖𝐹
2 , is minimized when 𝑊 and 𝐻 are determined in Eq. (2).  For 

the CNN representation, the variables are fine-tuned via back-propagation of the Euclidean error.   

 

Figure 2. Diagram of Unsupervised Fine-Tuning of the CNN Using GSNMF 

B. Dimensional Sentiment Analysis 

After obtaining the clustering results, the samples closest to the cluster centroid are identified as significant 

instances and selected. These instances are then fed into a sequential layer, such as an LSTM network, followed 

by an attention mechanism and a softmax classifier for final classification. The architecture of LAATCL model is 

depicted in Figure 3. 
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Figure 3. Architecture of LAATCL model 

In order to optimize the LAATCL model during training, the mean squared error between the actual label 𝑦 and 

the predicted class label �̂� is minimized. The model parameters is refined using a backpropagation approach that 

employs an Adam optimizer. As a result, in order to classify images for dimensional sentiment analysis and VA 

ratings, the LAATCL model is trained and tested.  

4. Result and Discussion 

In comparison to other models, the LAATCL model is assessed in this section.  This experiment was conducted 

on a Windows 10 64-bit PC with an Intel® CoreTM i5-4210 CPU@2.80GHz, 8 GB of RAM, and a 1 TB hard 

drive.  The Stanford Sentiment Treebank (SST) [21] and the CIFAR-10 [22] were the two datasets used.  In all, 

there are 8,544 learning texts, 2,210 test texts, and 1,101 validation texts in the SST dataset.  The CIFAR-10 dataset 

includes sixty thousand color photographs, with 6,000 images assigned to each of ten categories. Each image has 

a size of thirty-two by thirty-two pixels.  The training phase made use of 50,000 photographs, whereas the testing 

phase made use of 10,000 images.  For an objective comparison, Python 3.7.8 was used to run the existing models 

(Tree-RNN [12], Semi-SILDM [15], HT-CNN [18], and DTBDNN [20]) as well as the recently suggested 

LAATCL.  The following is a definition of the performance evaluation measures: 

Accuracy: Accuracy represents the proportion of correctly classified examples (both positive and negative) among 

all tested instances. It is computed using the formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                            (7) 

In this context, True Positive (TP) stands for the number of positively identified texts, True Negative (TN) for the 

number of negatively identified texts, False Positive (FP) for the number of negatively classified texts that were 

mistakenly classified as positive, and FN for the number of positively classified texts that were wrongly classified 

as negative.  

Precision: Precision measures the accuracy of positive predictions and is calculated as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                   (8) 

Recall: Recall, sometimes-called sensitivity, measures how well the model can detect all positive events and is 

calculated as: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑁 + 𝐹𝑁
                                                        (9) 

F-measure: By averaging Precision and Recall, the F-measure strikes a good balance between the two parameters. 

Because of:  
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𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
               (10) 

Figure 4 illustrates a comparative analysis of the LAATCL model with traditional models on the SST dataset. The 

LAATCL model shows enhanced precision by 7.03%, 5.43%, 2.91%, and 2.06% compared to DTBDNN, Semi-

SILDM, HT-CNN, and Tree-RNN respectively. Additionally, the recall of the LAATCL is increased by 7.23%, 

5.56%, 3.03%, and 2.16% compared to the DTBDNN, Semi-SILDM, HT-CNN, and Tree-RNN models. The F-

measure of the LAATCL is improved by 7.13%, 5.49%, 2.9%, and 2.11% compared to the DTBDNN, Semi-

SILDM, HT-CNN, and Tree-RNN models. Moreover, the accuracy of the LAATCL is enhanced by up to 7.24%, 

5.6%, 3.05%, and 1.88% compared to the DTBDNN, Semi-SILDM, HT-CNN, and Tree-RNN models. These 

findings indicate that the LAATCL model achieves superior classification performance on the SST dataset 

compared to the other models.  

 

Figure 4. Comparison of LAATCL with traditional Tree-Based DL Classifiers Using SST Dataset 

Figure 5 illustrates the comparative analysis of the LAATCL model with other traditional models evaluated on the 

CIFAR-10 dataset. The precision of the LAATCL has been enhanced by 5.5% and 4.42%, 2.99%, and 2.29% 

compared to the DTBDNN, Semi-SILDM, HT-CNN, and Tree-RNN models. The recall of the LAATCL is 

enhanced by 5.66%, 4.41%, 3.14%, and 2.11% compared to the DTBDNN, Semi-SILDM, HT-CNN, and Tree-

RNN models. The F-measure of the LAATCL is improved by 5.58%, 4.42%, 3.06%, and 2.2% compared to the 

DTBDNN, Semi-SILDM, HT-CNN, and Tree-RNN models. In addition, the accuracy of the LAATCL is increased 

by up to 5.92%, 4.48%, 3.31%, and 2.27% compared to the DTBDNN, Semi-SILDM, HT-CNN and Tree-RNN 

models. It follows that, when tested on the CIFAR-10 dataset, the LAATCL model outperforms competing 

algorithms in terms of efficiency in classifying VA ratings of texts or images. 

 

Figure 5. Comparison of LAATCL with traditional Tree-Based DL Classifiers Using CIFAR-10 Dataset 
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Figure 6. Memory Complexity for Different Tree-Based DL Classifiers 

Figure 6 shows the memory complexity (in MB) of various tree-based DL classifiers on the SST and CIFAR-10 

datasets. The LAATCL model significantly reduces memory complexity compared to other models. On the SST 

dataset, LAATCL reduces memory complexity by 74.55%, 67.06%, 53.33%, and 39.13% compared to DTBDNN, 

Semi-SILDM, HT-CNN, and Tree-RNN models. On the CIFAR-10 dataset, LAATCL reduces memory 

complexity by 66.67%, 58.33%, 50%, and 37.5% compared to the same models. 

5. Conclusion 

This study introduced the LAATCL model for DSA. It incorporated a clustering layer with the Tree-RNN to 

improve performance and reduce memory complexity by selecting reliable samples. This model utilized multi-

convolution and a clustering layer with GSNMF for clustering highly correlated samples. GSNMF helped in 

identifying and selecting samples closest to the cluster centroid for input to the LSTM network, resulting in 

improved accuracy and reduced memory complexity. The findings demonstrated that the LAATCL model 

achieved 93.57% and 95.25% accuracy as well as 280kB memory complexity for SST and 500kB for CIFAR-10 

datasets, outperforming state-of-the-art models. 
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