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Abstract

This paper presents a multi-server Markovian queuing-inventory system (MQIS) that incorporates attraction-
retention (AR) mechanisms for impatient customers and models catastrophic inventory losses within a ware-
house setting. The system consists of C identical servers, a limited waiting area, and a storage capacity of
Q items. Periodic disruptions may destroy all inventory in the system, compelling waiting customers either
to remain until stock is replenished or to exit the system. A subset of servers may take joint vacations when
no customers are waiting. To analyze this queuing-inventory system (QIS), we derive balance equations using
a three-dimensional continuous-time Markov chain framework, solving for steady-state solutions through a
recursive method. We then derive performance metrics and identify special-case queuing-inventory models
within the broader system. A cost-loss model is formulated to optimize the service rate and server vacation
strategies, minimizing overall costs. A genetic algorithm is employed to conduct a cost analysis. We collected
primary data from the Ethio Telecom district head office in Arba Minch, Ethiopia to validate our theoreti-
cal findings. The empirical analysis serves a dual purpose: to investigate performance measure sensitivity to
parameter variations and to discuss an optimization problem aimed at minimizing expected total cost (ETC)
while assessing the impacts of AR mechanisms and catastrophic events on ETC.

Keywords: Multi-Server System; Customer Attraction and Retention; Warehouse Disruptions; Impatient Cus-
tomer Dynamics; Inventory Management Strategies.

1 Introduction

Queuing-inventory systems (QIS) combine queuing theory and inventory control to improve service quality in
production, healthcare, and hospitality. In QIS, each customer served departs the system, reducing inventory
by one unit at the service completion point. For example, Ethio Telecom service centers in Ethiopia oper-
ate with waiting lines, where customers are served on a first-come, first-served (FCFS) basis, consuming
on-hand inventory items. Such integrated queuing systems have applications in supply chain management,1

vehicle maintenance,2 and medical services.3 Markovian QIS models are widely used for designing telecom-
munication and service systems, often incorporating advanced features like server vacations, customer retrials,
impatience, and catastrophic events impacting inventory.

Sigman and Simchi-Levi4 and Melikov and Molchanov5 independently introduced the QIS concept, prompt-
ing extensive research. In traditional queuing theory, servers are typically assumed always to be available;
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however, in practical settings, servers may become unavailable for periods due to maintenance, repairs, sup-
plementary tasks, or breaks. Such unavailable periods are termed ”vacations.” Researchers have studied QIS
models with server vacations to optimize server idle time. In multi-server QIS, vacation models often assume
all servers take a synchronous vacation, meaning they leave and return to the system together. In real-world
scenarios, however, organizations generally prefer to keep some servers active (either idle or busy) while others
are on vacation.

Daniel and Ramanarayanan6 first introduced the vacation concept within a QIS. Since then, QIS vacation
policies have been widely studied. For example, Divya et al.7 analyzed a single-server QIS with impatient
customers and a server that takes vacations to restock inventory. They derived expressions for performance
measures using probability-generating functions. Nithya et al.8 observed that breaks improve employee per-
formance, analyzing a four-dimensional stochastic QIS with multiple server vacations and a state-dependent
arrival process. Recently, Yue et al.9 studied synchronous server vacations in a multi-server QIS, where all
servers simultaneously vacation when inventory is depleted. However, this synchronous policy may not be
suitable in some cases.

In contrast, Jegannathan et al.10 investigated a multi-server QIS with asynchronous vacations and customer
retrials, where each of the C servers independently starts or ends vacation based on system conditions. Ser-
vice times are exponentially distributed, and if servers encounter insufficient customers or items, they may
initiate another vacation. The system manages inventory with an (s,Q) replenishment policy, and stationary
probabilities are derived using matrix geometric approximation.

Modern QIS models also consider customer attraction-retention (AR) strategies, essential in competitive busi-
ness environments. Offering promotions or improved service quality can attract new customers, but increased
arrival rates can lead to service delays. Customers who become impatient may abandon the queue without
service, impacting total costs. Balancing attraction and retention is crucial for QIS models aiming to minimize
total costs.

The vacation policy in our study differs from existing models. Specifically, D servers (where 0 < D < C) take
a vacation together when no customers are waiting at the service completion point, while the remaining C−D
servers are always available, either serving customers (when inventory is available) or idling (when inventory
is zero). If, upon returning, fewer than C − D customers are in line, the D servers take another vacation.
Since only a subset of servers can vacation simultaneously, our model uses an asynchronous vacation policy.
Inventory management follows a (0, q,Q) policy: when inventory drops to q, an order is placed to restock up
to Q units (q < Q).

Catastrophic events such as fires, floods, and human errors can destroy inventory entirely. Following a catastro-
phe, all inventory in storage becomes unavailable, necessitating immediate restocking. This scenario is termed
a QIS with catastrophes. Melikov et al.12 studied single-server QIS with catastrophes, using matrix-analytic
methods to determine steady-state distributions. However, few studies consider total inventory destruction.
We extend this work to a multi-server MQIS with catastrophes, AR mechanisms for impatient customers, and
asynchronous server vacations. Here, C removable servers operate under an asynchronous vacation policy,
and catastrophic events occur in the warehouse at a rate γ.

The rest of this paper is organized as follows. Section 2 presents model assumptions and a detailed description.
Sections 3 and 4 outline the research methodology and analytical framework, respectively. Section 5 discusses
data collection, while Section 6 covers numerical results and analysis. Conclusions are provided in Section 7.

2 Description of the Model

We consider a finite-capacity multi-server MQIS incorporating attraction-retention (AR) mechanisms for im-
patient customers and accounting for catastrophic events in the warehouse. The model assumptions and nota-
tions used throughout this paper are as follows:

1. Customers arrive at the service system, which is attached to an inventory, according to a Poisson process
with rate λ (λ ≥ 0). Upon arrival, each customer joins the queue with probability bn or balk with
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probability (1 − bn). For n ≤ C − D, bn = 1 − γ. Additionally, customer attraction mechanisms
(e.g., rewards, coupons) increase the arrival rate by β, representing the percentage increase due to these
incentives. While this increase can lead to service delays, potentially causing customer impatience,
retention mechanisms (e.g., high-quality service, customer relationship efforts) help retain customers at
a rate of r.

2. The system consists of C removable servers, a limited capacity waiting room for up to N customers,
and a maximum inventory size of Q. Each customer requires one inventory item for service, reducing
the on-hand inventory by one unit upon service completion.

3. Customers form a single queue, served on a first-come, first-served (FCFS) basis. Once service begins, it
continues without interruption unless a catastrophe occurs. Service times are independent and identically
distributed random variables following an exponential distribution with density function s(t) = µe−µt,
t ≥ 0, where µ is the service rate.

4. After joining the queue, each customer waits for a random amount of time T before service begins. If
service has not started by then, the customer may become impatient and leave the queue without service.
This waiting time T is a random variable with density function f(t) = αe−αt, t ≥ 0, where α is the
reneging rate. Let n denote the number of customers in the system. If n ≤ C − D and inventory
is available, customers receive immediate service, and reneging does not occur. For n > C − D,
(n− C +D) customers wait in the queue. Due to attraction mechanisms, the arrival rate may increase,
potentially inducing higher customer reneging. Retention mechanisms mitigate this, producing customer
retention at r. Thus, the average reneging rate R(n) for n customers in the system is:

R(n) =

{
(n− C +D)(1− r)α, C −D < n < N

0, 0 ≤ n ≤ C −D

5. When the system becomes empty, D servers (D < C) initiate a vacation for a random period V . If they
return to find no waiting customers, the D servers begin another vacation. The vacation time V follows
an exponential distribution with density function v(t) = ξe−ξt, t ≥ 0, where ξ is the vacation rate.

6. An (0, q, Q) ordering policy manages inventory. When the inventory level falls to q, an order is placed
to replenish inventory up to Q (q < Q), where q is the reorder level. The order delivery time is a random
variable with an exponential distribution parameter η (η > 0). The relationship between the number of
servers on duty and the reorder level is C −D < q. Upon each service completion, one inventory item
is used.

7. Catastrophic events occur in the warehouse following a Poisson process with rate γ. Each catastrophe
instantly empties the warehouse, setting on-hand inventory to zero. Customers whose service is inter-
rupted by a disaster may either rejoin the queue or leave the system. During this period, servers become
inoperative, and a restoration process begins.

8. During the restoration period, new customers continue to arrive. Restoration times are independent and
identically distributed, following an exponential distribution with parameter κ.

3 Research Methodology

3.1 Research Design

This study aims to reduce cost losses associated with warehouse catastrophes and impatient customer behav-
iors in QIS models. To achieve an optimal total cost, it is essential to both attract new arrivals and retain
potential reneging customers by improving service quality. This motivation led us to analyze a queuing system
with attached inventory and to incorporate attraction-retention mechanisms aimed at minimizing cost loss. In
addition, an asynchronous vacation policy for dedicated C-removable servers is adopted to improve service
quality. The analysis is structured on building a mathematical model of the QIS, assuming a Markov process.
The impact of key parameters on various performance measures is discussed using empirical data from Ethio
Telecom’s service center in Arba Minch, Ethiopia.
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3.2 Data Collection Method

The study uses primary data collected through direct observation at the Ethio Telecom Arba Minch district
head office. Data, including customer arrival times and service completion times, were recorded daily on a
data sheet over two weeks, excluding Sundays. Collection took place within Ethiopia’s standard workweek for
48 hours, specifically from 8:30 am to 12:30 pm and 1:30 pm to 5:30 pm, for a total of 12 days. Arrival and
service times for each customer were recorded using a stopwatch function on a mobile phone.

3.3 Time Measurements and Data Extraction

From the recorded time measurements, essential data were extracted according to the following process. Each
customer entering the Ethio Telecom service center was assigned an index, i = 1, 2, 3, . . . , n, corresponding
to the following time measures:

• (i) Customer arrival time

• (ii) Service completion time

• (iii) Inter-arrival time between consecutive arrivals

• (iv) Number of customers in the queue

• (v) Number of servers on vacation

• (vi) Number of reneged customers

• (vii) Waiting time in the queue

• (viii) Service time

• (ix) Waiting time in the system

Each of these parameters was averaged over the eight hours of data collection per day to obtain daily mean val-
ues. Using MATLAB, the average operating characteristics of the QIS were estimated by applying equations
derived from the M/M/C/N MQIS model.

3.4 Data Analysis Method

Both analytical and numerical analyses were conducted. The balance equations governing the MQIS in terms
of steady-state probabilities and study parameters were formulated. A recursive method was employed to
derive closed-form expressions for the steady-state probabilities associated with system size. Upon completing
data collection, the data were checked for completeness and exported to SPSS version 20 for further analysis to
obtain expected values. Based on the recorded data, numerical analysis was conducted to examine the effects
of various parameters on the MQIS performance.

4 Analysis of the Model

In this section, we carry out an analytical analysis of a finite-capacity multi-server MQIS model that incor-
porates attraction-retention mechanisms for impatient customers, alongside the impact of catastrophes in the
warehouse and random lead times.

Let the state of the system at time t be described by the following random variables:
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• X(t): denotes the system size (number of customers),

• Y (t): describes the inventory level,

• Z(t): indicates the status of the server, defined as

Z(t) =

{
0, if D servers are on vacation at time t

1, if all C servers are available for service at time t

The stochastic process

Φ(t) = {X(t), Y (t), Z(t); t ≥ 0}

is modeled as a three-dimensional Markov process with a state space given by:

Ω = {(n, s, 0) : 0 ≤ n ≤ C −D, 0 ≤ s ≤ Q} ∪ {(n, s, 1) : C −D + 1 ≤ n ≤ N, 0 ≤ s ≤ Q}

For the process Φ(t), the steady-state probability distribution is defined as:

pi,n,s = lim
t→∞

Pr{X(t) = n, Y (t) = s, Z(t) = i}, i = 0, 1

We assume that there are no customers in the system and that the level of inventory is Q at time t = 0.
Using the Markov process and the state-transition diagram in Figure 1, the MQIS with catastrophes in the
warehouse is governed by the set of balance equations (1 - 11).

−λ(1 + β)p0,0,0 + (µ+ η + κ)p0,1,s = 0; s = 0, 1, 2, · · · , q, q + 1, · · · , Q, n = 0 (1)

λ(1 + β)p0,n−1,s − [λ(1 + β) + nµ+ η + κ] p0,n,s + [(n+ 1)µ+ η + κ] p0,n+1,s

= 0; s = 0, 1, 2, · · · , q, q + 1, · · · , Q, 1 ≤ n < C −D
(2)

λ(1 + β)p0,C−D−1,s − [λ(1 + β)bC−D,s + (C −D)µ+ η + κ)]p0,C−D,s+

[(C −D)µ+ η + κ) + α]p0,C−D+1,s + [(C −D + 1)µ+ η + κ]p1,C−D+1,s = 0;

s = 1, 2, · · · , q, q + 1, · · · , Q, n = C −D

(3)

λ(1 + β)bn−1,sp0,n−1,s − [ξ + λ(1 + β)bn,s + (C −D)µ+ η + κ) + (n+

D − C)α(1− r)]p0,n,s + [(C −D)µ+ η + κ) + (n+ 1 +D − C)α(1− r)]

p0,n+1,s = 0; s = 1, 2, · · · , q, q, · · · , Q,C −D < n < N

(4)

λ(1 + β)bN−1,sp0,N−1,s − [ξ + (C −D)µ+ η + κ+ (N +D − C)α(1− r)]

p0,N,s = 0; s = 1, 2, · · · , q, q + 1, · · · , Q, n = N
(5)

ξp0,C−D+1,s − [λ(1 + β) + (C −D + 1)µ+ η + κ]p1,C−D+1,s + [(C −D + 2)µ+

η]p1,C−D+2,s = 0; s = 1, 2, · · · , q, q + 1, · · · , Q, n = C −D + 1
(6)

ξp0,n,s + λ(1 + β)p1,n−1,s − [λ(1 + β) + nµ+ η + κ]p1,n,s + [(n− 1)µ+ η + κ]

p1,n+1,s = 0; s = 1, 2, · · · , q, q + 1, · · · , Q, C −D + 2 ≤ n ≤ C − 1
(7)

ξp0,C,s + λ(1 + β)p1,C−1,s − [λ(1 + β)bC,s + (Cµ+ η + κ)]p1,C,s + [Cµ+ η+

κ+ α(1− r)]p1,C+1,s = 0; s = 1, 2, · · · , q, q + 1, · · · , Q, n = C
(8)

ξp0,n,s + λ(1 + β)bn−1,sp1,n−1,s − [λ(1 + β)bn,s + (Cµ+ η + κ) + (n− C)α

(1− r)]p1,n,s + [(Cµ+ η + κ) + (n+ 1− C)α(1− r)]p1,n+1,s = 0; s = 1, 2,

· · · , q, q + 1, · · · , Q, C < n < N

(9)
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Figure 1: State-transition diagram of the QIS model

ξp0,N,s + λ(1 + β)bN−1,sp1,N−1,s − [(Cµ+ η + κ) + (N − C)α(1− r)]p1,N,s

= 0; s = 1, 2, · · · , q, q + 1, · · · , Q
(10)

Normalization condition:
Q∑

s=1

[
C−D∑
n=0

p0,n,s +

N∑
n=C−D+1

p1,n,s

]
= 1 (11)

4.1 Steady-State Solution

To obtain neat and closed-form solutions, a recursive technique is employed to find all probabilities p0,n,s and
p1,n,s in terms of p0,0,0, λ, µ, β, bn, r, α, ξ, η, and κ. The solution approach for the system is stated in the
form of Theorem 4.1 as follows:

Theorem 4.1. If the steady-state recurrence equations of a finite-capacity multi-server MQIS with attraction-
retention mechanisms for impatient customers and catastrophes in the warehouse under the (0, q,Q) inventory
policy are as in (1 - 11), then the probabilities of the system size are given by:

p0,0,0 =

[
L+

N−1∑
n=C−D

[
(λ(1 + β))

n

µ+ η + κ+ ξ

N−1∏
i=C−D+1

bi

]
+ p1,N,s

]−1

,

s = 0, 1, 2, · · · , q, · · · , Q

(12)

p0,1,s = ρp0,0,0, s = 0, 1, 2, · · · , q, · · · , Q (13)

p0,n,s =
1

n!
ρnp0,0,0, 2 ≤ n ≤ C −D, s = 0, 1, 2, · · · , q, · · · , Q (14)

p1,1,s =
λ (1 + β)

µ+ η + κ+ ξ

N−1∏
i=2

[bi] p0,0,0, s = 0, 1, 2, · · · , q, · · · , Q (15)
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p1,n,s =
(λ (1 + β))

n

µ+ η + κ+ ξ

N−1∏
i=C−D+1

[bi] p0,0,0,

C −D + 1 ≤ n < N, s = 0, 1, 2, · · · , q, · · · , Q

(16)

p1,N,s =
(λ (1 + β))

N

µ+ η + κ+ ξ

N−1∏
i=C−D+1

[bi] p0,0,0, s = 0, 1, 2, · · · , q, · · · , Q (17)

Where

L = 1 + ρ+

C−D−1∑
n=2

[
(n!)−1 (ρ)

n]
ρ =

(
λ (1 + β)

µ+ η + κ

)
bi =

bi−1

µ+ η + κ+ (i− (C −D))α(1− r) + ξ
, i = C −D + 1, C −D + 2, · · · , N − 1

Proof. We obtain the steady-state probabilities using a recursive method. Rearranging (1), we get the value of
p0,1,s as

p0,1,s = ρp0,0,0, s = 0, 1, 2, · · · , q, · · · , Q

which is (13). From (2),

λ(1 + β)p0,0,s − (λ(1 + β) + µ+ η + κ)p0,1,s + 2(µ+ η + κ)p0,2,s = 0, n = 1

Using (1), we have

−λ(1 + β)p0,1,s + 2(µ+ η + κ)p0,2,s = 0, s = 0, 1, 2, · · · , q, q + 1, · · · , Q

This leads to

p0,2,s =

(
(λ(1 + β))2

2(µ+ η + κ)2

)
p0,0,0 =

1

2
ρ2p0,0,0, s = 0, 1, 2, · · · , Q

where

ρ =
λ(1 + β)

µ+ η + κ

Similarly, for n = 2, the above procedure gives

p0,3,s =
1

6
ρ3p0,0,0, s = 0, 1, 2, · · · , Q

Therefore, by the principle of induction, we conclude for any n such that 3 < n ≤ C −D:

p0,n,s =
1

n!
ρnp0,0,0, s = 0, 1, 2, · · · , Q

which is (14). From (3) for n = C −D + 1, we obtain

p1,C−D+1 =
(λ(1 + β + κ))C−D+1

µ+ η + κ+ ξ

(
bC−D

µ+ η + κ+ α(1− r) + ξ

)(
bC−D+1

µ+ η + κ+ 2(α(1− r)) + ξ

)
· · ·

(
bN−2

µ+ η + κ+ (N − 1− (C −D))α(1− r) + ξ

)
p0,0,0; s = 0, 1, 2, · · · , q.

Therefore, by the principle of induction, we conclude for any n such that C −D < n < N :

p1,n =
(λ(1 + β))n

µ+ η + κ+ ξ

N−1∏
i=C−D+1

[bi] p0,0,0

where

bi =
bi−1

µ+ η + κ+ (i− (C −D))α(1− r) + ξ
, i = C −D + 1, C −D + 2, · · · , N − 1
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which is (16). It is not difficult to obtain (15) and (17) from (16) for n = 1 and n = N , respectively. Hence,
equations (14) and (16) completely determine all the steady-state probabilities.

Now, it only remains to determine p0,0,0. Applying the normalization condition, we have

p0,0,0 +

Q∑
s=0

[
C−D∑
n=0

p0,n,s +

N∑
n=C−D+1

p1,n,s

]
= 1.

This leads to

p0,0,0 + Lp0,0,0 +

N−1∑
n=C−D

[
(λ(1 + β))

n

µ+ η + κ+ ξ

N−1∏
i=C−D+1

bi

]
p0,0,0 + p1,N,s = 1, s = 0, 1, 2, · · · , q, · · · , Q

where

bi =
bi−1

µ+ η + κ+ (i− (C −D))α(1− r) + ξ
, i = C −D + 1, C −D + 2, · · · , N − 1

and

p1,N,s =
(λ (1 + β))

N

µ+ η + κ+ ξ

N−1∏
i=C−D+1

[bi] p0,0,0.

Thus,

p0,0,0 =

[
L+

N−1∑
n=C−D

[
(λ(1 + β))

n

µ+ η + κ+ ξ

N−1∏
i=C−D+1

bi

]
+ p1,N,s

]−1

, s = 0, 1, 2, · · · , q, · · · , Q

where

L = 1 + ρ+

C−D−1∑
n=2

[
(n!)−1 (ρ)

n]
,

ρ =
λ (1 + β)

µ+ η + κ
,

bi =
bi−1

µ+ η + κ+ (i− (C −D))α(1− r) + ξ
, i = C −D + 1, C −D + 2, · · · , N − 1

which is (12). The system is stable for any value of the utilization factor ρ.

This completes the proof.

4.2 Special Cases

In this section, we derive the results of some models found in the existing literature by taking specific values
of the parameters bn, α, ξ, β, r, and γ.

Case 1: In the absence of catastrophes, balking, multiple servers, server vacation, and attraction-retention
mechanisms for impatient customers (i.e., for γ = 0, bn = 1,∀n = 0, 1, 2, ..., N , C = 1, ξ = β = r = 0),
the model reduces to an M/M/1/N queuing scheme with inventory for impatient customers under a random
order size as studied by Alnowibet et al.17

Case 2: In the absence of server vacation, multiple servers, and attraction-retention mechanisms for impatient
customers (i.e., for γ = 0, ξ = 0, C = 1, β = r = 0), the model reduces to a single-server queuing inventory
system (QIS) with a finite waiting room under catastrophes in the warehouse as studied by Melikove et al.12

Case 3: For a fixed balking rate (i.e., bn = b,∀n = 0, 1, 2, · · · , N ), in the absence of catastrophes, reneging,
and attraction-retention mechanisms for impatient customers (i.e., γ = α = β = r = 0), the study reduces to
a multi-server retrial QIS with asynchronous vacations as examined by Jeganathan et al.10
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4.3 Performance Measures

This section explores key performance metrics related to both inventory and queuing systems, following the
determination of steady-state probabilities. The derivation of these metrics is organized as follows:

1. Mean Number of Items in Inventory:

EI =

Q∑
s=0

C−D∑
n=0

sp0,n,s +

Q∑
s=0

N∑
n=C−D+1

sp1,n,s (18)

2. Mean Reorder Rate:

Er = η

q∑
s=0

C−D∑
n=0

p0,n,s + η

q∑
s=0

N∑
n=C−D+1

p1,n,s (19)

Under the (0, q,Q) policy, a reorder is initiated when the inventory level falls to s (0 ≤ s ≤ q), triggering
an order of size (Q− s) at the end of service.

3. Mean Order Size:

E0 =

C−D∑
n=0

Qp0,n,0 +

q∑
s=0

N∑
n=C−D+1

(Q− s)p1,n,s (20)

Reorders are triggered when inventory levels drop to s (0 ≤ s ≤ q), resulting in an order size of (Q−s).

4. Mean Loss Rate of Customers:

LS = λ(1 + β)

[
C−D∑
n=0

p0,n,0 +

Q∑
s=1

p1,N,s

]
(21)

Lost sales occur when customers either find no available inventory despite waiting space or discover full
waiting space.

5. Quality of Service Measure (β1-Service Level):

β1 =
λ(1 + β)− LS

λ(1 + β)
(22)

A service quality closer to one indicates better service, whereas a value closer to zero suggests poorer
service.

6. Effective Arrival Rate:
λeff = λ(1 + β)− LS = λ(1 + β)β1 (23)

This measure provides insights into customer experience without detailing waiting times.

7. Mean Number of Customers in the System:

Ls =

Q∑
s=0

C−D∑
n=1

np0,n,s +

Q∑
s=1

N∑
n=C−D+1

np1,n,s (24)

8. Mean Number of Customers in the Queue:

Lq =

Q∑
s=0

N∑
n=C−D+1

[n− (C −D)] p1,n,s (25)

9. Mean Waiting Times: The mean waiting time in the system (Ws) and in the queue (Wq) can be derived
using effective arrival rates and Little’s formula:

Ws =
Ls

λeff
(26)

Wq =
Lq

λeff
(27)
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10. Probability of All Servers Being Busy:

PB =

Q∑
s=1

N∑
n=C−D

p1,n,s (28)

11. Probability of Idle Servers:

PI =

Q∑
s=0

C−D−1∑
n=0

p0,n,s +

N∑
n=C−D

p1,n,0 (29)

This indicates the presence of idle servers when customer numbers are fewer than active servers.

12. Mean Number of Customers Not Entering the Queue (BR) and Mean Number of Customers Leav-
ing Without Service (RR):

BR = λ(1 + β)

Q∑
s=0

N∑
n=C−D

(1− bn)p1,n,s (30)

RR = α(1− r)

Q∑
s=0

N∑
n=C−D+1

(n− C +D)p1,n,s (31)

In (31), (n− C +D)(1− r)α represents the instantaneous reneging rate of customers.

LR = BR+RR (32)

13. Mean Number of Customers Joining for Service and Leaving After Being Served:

GR = Ls − LR (33)

14. Mean Number of Customers Lost Due to Server Vacations:

V Lr = ξ

Q∑
s=0

C−D∑
n=0

np0,n,s (34)

where ξ denotes the reneging rate triggered by server vacations.

15. Mean Number of Items Destroyed Due to Catastrophes:

Ec =

Q∑
s=0

C−D∑
n=0

sγknp0,n,s +

Q∑
s=0

N∑
n=C−D+1

sγknp1,n,s (35)

where

γkn =

{
γ0n, if no catastrophe occurs at state n

γ1n, if a catastrophe occurs at state n

Finally, an optimization study will be conducted, focusing on minimizing expected total costs with the ware-
house capacity as the control parameter.

4.4 Cost-Loss Model

In this section, we develop a cost model associated with catastrophes, which encompasses the expected costs
related to operating the system, arising from both customer queuing and inventory holding. Following the
establishment of performance measures, we formulate the total expected cost function per unit of time, where
the number of servers on vacation D and the service rate µ are treated as decision variables. Our primary
objective is to determine the optimal number of servers to go on vacation D∗ and to identify the optimal
service rate µ∗ that minimizes the expected total cost (ETC) loss.

We define the cost elements as follows:
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• C1: Holding cost of inventory per unit time.

• C2: Fixed cost for placing an order.

• C3: Replenishment cost per item.

• C4: Cost per unit time when a server is on vacation.

• C5: Cost per unit time when a server is busy.

• C6: Cost per unit time when a server is idle.

• C7: Cost per unit time when a customer joins the queue and waits for service (cost of waiting).

• C8: Cost per unit time when a customer is served (cost of service).

• C9: Cost per unit time when a customer balks or reneges.

• C10: Cost per unit time when inventory is destroyed due to a catastrophe.

Using the definitions of these cost elements along with their corresponding system characteristics, the ETC
loss function per unit time is expressed as:

F (µ,D) = C1EI + C2Er + C3E0Er + C4V Lr + C5PB + C6PI + C7Lq+

C8GR+ C9LR+ C10Ec.
(36)

In equation (36), each term represents the following costs:

• C1EI : Inventory holding cost.

• C2Er: Order cost incurred when placing an order.

• C3E0Er: Cost incurred during replenishment.

• C4V Lr: Cost incurred when servers go on vacation.

• C5PB : Cost incurred when servers are busy.

• C6PI : Cost incurred by idle servers.

• C7Lq: Cost incurred by customers waiting in line for service.

• C8GR: Cost incurred when customers are served.

• C9LR: Cost incurred when customers are lost.

• C10Ec: Cost incurred when items are destroyed due to catastrophes.

Thus, the optimization problem can be formulated as:

Minimize F (µ,D)

Subject to the constraints:
0 ≤ µ ≤ M1

0 ≤ D ≤ M2

where M1 is a real number and M2 is an integer. The cost function F (µ,D) is nonlinear in both µ and D,
complicating the analysis of its convexity. To tackle this problem, meta-heuristic algorithms, such as genetic
algorithms, are employed to find solutions using computer software like MATLAB. The steps of the genetic
algorithm used to derive the optimal solution are outlined below.
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Genetic Algorithm
begin
Set
cost function, F (m)
population size, n
maximum generation, MaxGen
length of chromosome, lc
minimum value of m, mm
maximum value of m, mM
for mm ≤ m ≤ mM
randomly generate an initial population of n chromosomes, m1,m2, · · · ,mn

end for
set an iteration counter i = 0
compute the fitness values of each chromosome, F (m1), F (m2), · · · , F (mn)
while (i ≤ MaxGen)
select a pair of chromosomes from the initial population based on fitness,
Apply crossover operation on selected pair with crossover probability, pc,
Apply mutation on the offspring with mutation probability, pm,
Replace old population with newly generated population,
Iteration increment, i = i+ 1
end while
return the best solution, m− best and F − best
end

5 Data Presentation

The primary data for this analysis were collected at the Ethio Telecom Service Center in Arba Minch City,
Ethiopia. The results are summarized in Tables 1 and 2.
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Table 1: Summary of Customer Arrivals (A(t)), Served (µ(t)), Reneges (R(t)), and Servers on Vacation
(D(t)) at Ethio Telecom, Arba Minch District Head Office from February 4-9, 2024, and February
11-16, 2024, at any given time (t)

Week Day Time (t) µ(t) A(t) D(t) R(t)
Week (I) Monday 8 : 30 am - 5 : 30 pm 7.375 15.125 9.875 4.750

Tuesday 8 : 30 am - 5 : 30 pm 7.125 9.875 7.600 1.750
Wednesday 8 : 30 am - 5 : 30 pm 7.250 10.500 4.760 2.250

Thursday 8 : 30 am - 5 : 30 pm 7.50 5.500 7.940 0.500
Friday 8 : 30 am - 5 : 30 pm 7.625 17.500 1.780 4.000

Saturday 8 : 30 am - 5 : 30 pm 8.375 8.500 4.750 2.250
Week (II) Monday 8 : 30 am - 5 : 30 pm 7.250 11.125 5.450 1.250

Tuesday 8 : 30 am - 5 : 30 pm 7.375 13.875 9.250 5.250
Wednesday 8 : 30 am - 5 : 30 pm 7.500 7.500 4.850 2.250

Thursday 8 : 30 am - 5 : 30 pm 7.250 6.500 7.950 1.500
Friday 8 : 30 am - 5 : 30 pm 7.000 18.500 5.650 3.000

Saturday 8 : 30 am - 5 : 30 pm 9.000 9.500 1.750 2.250

Table 2: Ordering and Receiving of Items at Ethio Telecom, Arba Minch District Head Office from
February 4-9, 2024, and February 11-16, 2024, at any given time (t)

Week Day Time (t) Ordering Time Receiving Time
Week (I) Monday 8 : 30 am - 5 : 30 pm 9 : 10 am –

Tuesday 8 : 30 am - 5 : 30 pm – –
Wednesday 8 : 30 am - 5 : 30 pm – 10 : 20 am

Thursday 8 : 30 am - 5 : 30 pm – –
Friday 8 : 30 am - 5 : 30 pm – –

Saturday 8 : 30 am - 5 : 30 pm – –
Week (II) Monday 8 : 30 am - 5 : 30 pm – –

Tuesday 8 : 30 am - 5 : 30 pm – –
Wednesday 8 : 30 am - 5 : 30 pm 9 : 30 am –

Thursday 8 : 30 am - 5 : 30 pm – –
Friday 8 : 30 am - 5 : 30 pm – 11 : 00 am

Saturday 8 : 30 am - 5 : 30 pm – –

Note: Data collection was not conducted from 12:30 pm to 1:30 pm due to the lunch break.

6 Numerical Results and Discussion

This section presents a numerical experiment designed to underscore the significance of the theoretical results.
The experiment has three primary objectives: (1) to evaluate the accuracy of the derived formulas for steady-
state probabilities, (2) to analyze the behavior of various performance metrics as key parameters change,
and (3) to tackle an optimization problem aimed at minimizing the Expected Total Cost (ETC), as computed
through Equation (36).

We implemented a Design of Experiments (DoE) framework to ensure fair comparisons among algorithms and
to identify optimal parameter values through structured experimentation. Our statistical analysis, particularly
using ANOVA, revealed statistically significant differences across weekdays in both the service rate (F (5, 6) =
7.597, p = 0.014) and the arrival rate (F (5, 6) = 9.503, p = 0.008). These results indicate that specific
algorithm settings significantly impact performance outcomes. Although the vacation rate and reneging rate
did not yield significant results (p > 0.05), they still provide insights into the variability within our data.

To better understand the weekday variations, we conducted a post-hoc Tukey HSD test, which highlighted sig-
nificant differences in service rate performance, particularly between Saturdays and other weekdays. For exam-
ple, the mean difference in service rate between Monday and Saturday was significant, with Mean Difference =
−1.375, p = 0.022. This suggests that Saturday’s service rate is notably lower, which could be due to fewer
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vendors or a reduction in operational efficiency. The consistently significant mean differences between Sat-
urday and the rest of the week (Tuesday: Mean Difference = −1.4375, p = 0.018) imply that operational
adjustments might be necessary to enhance Saturday’s service performance.

Similarly, the arrival rate analysis revealed significant mean differences between specific weekdays, particu-
larly between Friday and both Wednesday and Saturday. For instance, the arrival rate on Friday differed sig-
nificantly from that on Wednesday (Mean Difference = 9.0, p = 0.024), and Saturday (Mean Difference =
9.0, p = 0.024). This variation could reflect changing customer behavior towards the end of the week, poten-
tially due to limited weekend operational hours or specific promotional events that attract more customers.

These insights into service and arrival rates across different days are valuable for scheduling and staffing
optimizations. Adjustments based on these patterns can help balance the load, reduce customer wait times, and
maintain consistent service quality throughout the week. Future studies might explore additional operational
factors affecting Saturday service rates and weekday customer arrival patterns.

For the first goal, determining the accuracy of the developed formulas analytically is challenging. With finite
system capacity, steady-state probabilities exist for any utilization factor ρ, calculated exactly through recursive
methods using MATLAB. Since probabilities are non-negative real numbers that sum to one, this confirms the
validity of the theoretical results in Section 4. These steady-state probabilities enable the calculation of key
performance measures that characterize system efficiency and help predict future system dynamics with greater
precision.

For the second goal, we analyze the impact of parameter changes on performance metrics (18 - 35). Empirical
data highlights the dynamic balance between customer demand and service capacity at Ethio Telecom’s Arba
Minch center, where 13 vendors serve an average of 89 customers daily. On average, 6.06 vendors are on
vacation, with a customer reneging rate of 0.029, potentially increasing to 0.044 during server vacations. Cus-
tomer arrival and service rates are 11.17 and 7.25 per hour, respectively. We assume occasional catastrophes in
inventory, which reduce the service rate—an important factor in managing inventory-related disruptions. The
center’s objective is to minimize wait times and system costs by optimizing the number of available vendors.
Unlike infinite-capacity systems, this model does not require ρ to be below 1.

Although rare, catastrophic warehouse events such as fires, floods, or outages can significantly impact service
rates by damaging inventory, disabling equipment, or halting operations. Such events may lead to order delays
or stock-outs. Recovery times depend on the severity of the event, potentially lasting from days to weeks,
which affects service rates until operations normalize. To predict system dynamics at any time t, we define the
probability of a customer joining the queue as:

bn =

{
1− γ, for 0 ≤ n ≤ C −D − 1,
N−n
N (1− γ), for C −D ≤ n ≤ N

The cost elements are defined as follows: C1 = 100, C2 = 110, C3 = 120, C4 = 150, C5 = 130, C6 = 140,
C7 = 120, C8 = 56, C9 = 80, and C10 = 200.

A genetic algorithm is used to determine the optimal number of servers on vacation, D∗, and the optimal ser-
vice rate, µ∗, to minimize the Expected Total Cost (ETC). Performance metrics, including the mean inventory
level, mean order size, mean queue length, and mean customer loss, are evaluated at (µ∗, D∗).

The sensitivity analysis examines how variations in key parameters—such as the catastrophe rate γ, restoration
rate κ, reordering rate η, attraction rate β, retention rate r, arrival rate λ, reneging rate α, and vacation rate ξ
impact the optimal vacationing vendor count D∗, service rate µ∗, and F ∗. Identifying the optimal values for
D∗ and µ∗ is challenging due to the integer nature of D and the nonlinear complexity of the ETC function. To
address this, a heuristic approach is used to obtain D∗ and µ∗ values that satisfy:

F (D∗ − 1) > F (D∗) < F (D∗ + 1) (37)

F (µ∗ − d) > F (µ∗) < F (µ∗ + d) (38)

where d is a positive constant. Tables 3 – 5 present the results, with each column showing parameter changes.
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Table 3: System performance measures for D = 6, α = 0.029, ξ = 0.015, β = 0.3, r = 0.4, η = 0.0588,
γ = 0.02, κ = 0.8

λ 11.17 11.20 11.23 11.26 11.29 11.32
µ 7.25 7.00 6.75 6.50 6.25 6.00

EI 81.757188 81.554349 81.352507 81.151656 80.951788 80.752895
Er 0.003770 0.003761 0.003752 0.003743 0.003733 0.003724
E0 78.551024 78.356139 78.162213 77.969238 77.777208 77.586115
LS 13.521000 13.560000 13.599000 13.638000 13.677000 13.716000
Ls 88.513795 88.516212 88.518610 88.520990 88.523351 88.525694
Lq 81.546992 81.549232 81.551454 81.553659 81.555847 81.558018
Ws 0.546992 0.549232 0.551454 0.553659 0.555847 0.558018
Wq 0.513795 0.516212 0.518610 0.520990 0.523351 0.525694
LR 41.552631 41.560621 41.568568 41.576472 41.584335 41.592155
PB 0.995258 0.995283 0.995308 0.995333 0.995358 0.995382
PI 0.004742 0.004717 0.004692 0.004667 0.004642 0.004618
Ec 80.122044 79.923262 79.725457 79.528623 79.332752 79.137837
F 42427.691626 42368.529597 42309.657552 42251.073382 42192.774997 42134.760330

Using the parameter values: number of servers on vacation D = 6, reneging rate α = 0.029, reneging rate due
to server vacation ξ = 0.015, customer encouragement rate β = 0.3, retention rate r = 0.4, replenishment
lead time rate η = 0.0588, catastrophe rate γ = 0.02, and restoration rate κ = 0.8, an analysis is conducted to
examine the influence of varying arrival rate λ and service rate µ. The numerical results are presented in Table
3. From this table, we conclude that:

1. Mean inventory level EI , mean order size E0, idle probability of servers PI , and the ETC F all decrease
as the arrival rate of customers λ increases. The mean reordering rate Er and mean number of items
destroyed due to catastrophes Ec decline slightly, while the busy probability of the servers PB increases
significantly with an increase in λ.

2. The values of performance measures such as mean lost sales LS, mean number of customers in the
system Ls (including the queue Lq), mean waiting time in the system Ws (including the queue Wq), and
mean number of customers lost LR all increase as λ grows.

Next, a similar analysis is conducted by fixing specific parameters: setting λ to 11.17, D to 6, η to 0.0588, γ
to 0.02, and κ to 0.8, while allowing α, β, r, and µ to vary. The results of this analysis are presented in Table
4, and the implications are discussed below.

1. As ξ decreases, ETC F also decreases with increasing values of α and β, and with a decreasing value of
r.

2. The performance measures LS, Ls, Lq , Ws, Wq , LR, and PB all increase as µ and r decrease, and as α
and β increase. Mean inventory level EI , mean reordering rate Er, mean order size E0, mean number
of items destroyed due to catastrophes Ec, and idle probability of servers PI all decrease as µ and r
decrease, and as α and β increase.

Finally, by fixing µ = 19.9833, D = 6, η = 0.0588, γ = 0.02, and κ = 0.8, we vary the parameters β, λ, α,
r, and ξ. The detailed results are presented in Table 5, and the findings are outlined below.

1. Mean inventory level EI , mean reordering rate Er, mean order size E0, idle probability of servers PI ,
mean number of items destroyed due to catastrophes Ec, and the ETC F all decrease with increasing
values of β, λ, and α, as well as with decreasing values of r and ξ. Simultaneously, mean lost sales LS,
mean number of customers in the system Ls, mean queue length Lq , mean waiting time in the system
Ws, mean waiting time in the queue Wq , mean number of customers lost LR, and busy probability of
servers PB all increase with increasing values of β, λ, and α, and with decreasing values of r and ξ.
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Table 4: System performance measures for λ = 11.17, D = 6, η = 0.0588, γ = 0.02, κ = 0.8

α 0.024 0.025 0.026 0.027 0.028 0.029
β 0.00 0.10 0.20 0.30 0.40 0.50
r 0.90 0.80 0.70 0.60 0.50 0.40
ξ 0.019 0.018 0.017 0.016 0.015 0.014
µ 7.25 7.00 6.75 6.50 6.25 6.00

EI 103.926139 95.322844 88.024406 81.757188 76.318444 71.554957
Er 0.004793 0.004396 0.004059 0.003770 0.003520 0.003300
E0 99.850604 91.584694 84.572469 78.551024 73.325564 68.748881
LS 10.170000 11.287000 12.404000 13.521000 14.638000 15.755000
Ls 88.205171 88.335717 88.435601 88.513795 88.576204 88.626848
Lq 81.261274 81.382084 81.474562 81.546992 81.604829 81.651783
Ws 0.261274 0.382084 0.474562 0.546992 0.604829 0.651783
Wq 0.205171 0.335717 0.435601 0.513795 0.576204 0.626848
LR 40.558149 40.934988 41.250332 41.518351 41.749171 41.950221
PB 0.991985 0.993376 0.994434 0.995258 0.995911 0.996438
PI 0.008015 0.006624 0.005566 0.004742 0.004089 0.003562
Ec 101.847616 93.416388 86.263918 80.122044 74.792076 70.123858
F 48884.779459 46380.178910 44253.849868 42426.868899 40840.636386 39450.795809

Table 5: System performance measures for µ∗ = 19.9833, D = 6, η = 0.0588, γ = 0.02, κ = 0.8

β 0.00 0.10 0.20 0.30 0.40 0.50
λ 11.17 11.2 11.23 11.26 11.29 11.32
α 0.024 0.025 0.026 0.027 0.028 0.029
r 0.90 0.80 0.70 0.60 0.50 0.40
ξ 0.019 0.018 0.017 0.016 0.015 0.014

EI 103.926139 95.090076 87.591819 81.151656 75.562092 70.666176
Er 0.004793 0.004385 0.004040 0.003743 0.003485 0.003259
E0 99.850604 91.361054 84.156846 77.969238 72.598873 67.894953
LS 10.170000 11.320000 12.476000 13.638000 14.806000 15.980000
Ls 88.205171 88.339054 88.441219 88.520990 88.584493 88.635891
Lq 81.261274 81.385172 81.479765 81.553659 81.612512 81.660170
Ws 0.261274 0.385172 0.479765 0.553659 0.612512 0.660170
Wq 0.205171 0.339054 0.441219 0.520990 0.584493 0.635891
LR 40.558149 40.944621 41.267867 41.542446 41.778763 41.984455
PB 0.991985 0.993412 0.994493 0.995333 0.995997 0.996532
PI 0.008015 0.006588 0.005507 0.004667 0.004003 0.003468
Ec 101.847616 93.188275 85.839983 79.528623 74.050850 69.252852
F 48884.779459 46312.374607 44127.751191 42250.256748 40619.931873 39191.345366

https://doi.org/10.54216/AJBOR.120203
Received: November 16, 2024 Revised: 27 December, 2024 Accepted: January 20, 2025

47



American Journal of Business and Operations Research (AJBOR) Vol. 12, No. 02, PP. 32-51, 2025

2. The mean reordering rate Er decreases slightly with increasing values of β, λ, and α, as well as with
decreasing values of r and ξ.

For the parameter values β = 0.3, λ = 11.17, α = 0.029, r = 0.4, η = 0.0588, ξ = 0.015, D = 6, γ = 0.02,
and κ = 0.8, two graphs are presented: Figure 2 and Figure 3.

Figure 2 illustrates that the waiting time in the queue decreases as the number of customers served, denoted as
µ, increases. The figure demonstrates that when the warehouse operates under normal conditions, customers
experience the shortest waiting time for service.

Figure 3 depicts that the mean loss of sales decreases as the number of customers leaving the system after
receiving service increases. The system’s service rate rises, indicating that it offers more services and consumes
inventory faster. The lost sales decrease with the number of customers leaving, highlighting that as the number
of customers served increases, the mean loss of sales declines. This trend is practically valid because, under
uncertain inventory order sizes, an increase in the speed of service in a queuing system leads to a reduction in
the mean loss of sales.

From Figure 4, we observe that both mean inventory level EI and mean inventory destroyed due to catastrophes
Ec decrease as the arrival rate λ increases. The figure demonstrates the impact of customer arrival rate λ on the
mean inventory level EI and the mean inventory lost to catastrophes Ec. It first shows that a higher arrival rate
reduces the total inventory level EI . Additionally, it illustrates that the inventory destroyed due to catastrophes
Ec decreases with an increasing arrival rate λ.

Figure 2: Effect of changing the speed of service µ with respect to waiting time in the queue Wq
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Figure 3: Impact of service rate µ on the mean number of replenishment E0 and mean lost sales LS

Figure 4: Impact of arrival rate λ on mean inventory level EI and mean inventory destroyed Ec
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7 Conclusions

This paper examines a multi-server finite-capacity queuing-inventory system. We have incorporated attraction-
retention mechanisms for impatient customers and asynchronous server vacations while studying the impact
of catastrophes in the warehouse to gain insights through a mathematical model. The study finds that effective
management of queues and inventory relies on two key factors: satisfying impatient customers and ensuring
quick server availability after breaks.

By applying the Markov process, we derived the governing equations of the system. Steady-state probability
distributions for the system size were evaluated using a recursive method, and formulas for calculating various
performance measures, including the impact of catastrophes, were also derived. Moreover, several existing
models in the literature are shown to be special cases of the model studied here. The impact of disasters on the
system characteristics is assessed through numerical illustrations. In contrast to classical queuing-inventory
systems without disasters, we observed that in systems with disasters, the expected total cost (ETC) increases
with the rate of catastrophes under a given system load due to rising restoration costs.

Building on the performance analysis, we developed a cost-loss model to identify the optimal service rate and
the optimal number of servers allowed to go on vacation simultaneously. Furthermore, a genetic algorithm was
implemented to search for the optimal values of specific system parameters, aiming to minimize the cost-loss
function.

The findings of this paper offer valuable insights for both practitioners and researchers working on real-world
problems in computer networks, communication systems, and telecommunication network design. These
results can be applied to optimize queue and inventory management, server availability, and system resilience
in various applications.

Future Directions: There is ample scope for future extensions of this study, a few examples of which are
mentioned below:

• Throughout this paper, we considered the arrival pattern of customers to be single arrivals. Future
research could extend the analysis to include customers with batch arrivals and retrials. Additionally,
the service pattern could be considered in batches, as it is applicable in transportation and healthcare
centers.

• This study focused on warehouse catastrophes as disruptions to the queuing-inventory system (QIS).
Future research could explore how the system behaves when outages or disruptions affect the servers.

• Another direction is to investigate these models using a Markov arrival process (MAP) and retrial cus-
tomers, as well as phase-type (Ph) service time distributions.
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