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Abstract 

Diabetic retinopathy (DR) is an eye disorder triggered by diabetes that might result in loss of sight. Earlier 

diagnosis of DR is critical since it might cause loss of sight. Manual diagnoses of DR severity by ophthalmologists 

are time-consuming and challenging. As a result, there has been considerable attention on designing an automatic 

technique for DR detection using fundus photographs. In medical science, prognosis and diagnosis are the most 

challenging tasks due to the presence of fuzziness in medical images and the restricted subjectivity of the experts. 

Neutrosophic Set (NS) in medical image analysis provides an understanding of the NS concepts, together with 

knowledge of how to collect, handle, interpret, and analyze clinical images using NS techniques. The neutrosophic 

set (NS), which is a generality of fuzzy set, provides the overcoming prospect of the restriction of fuzzy-based 

models for the analysis of medical images. This manuscript develops a Robust Diabetic Retinopathy Detection 

and Grading using Neutrosophic Topological Vector Space (DRDG-NSTVS) technique on fundus images. The 

DRDG-NSTVS technique begins with Median Filter (MF) noise removal to optimize the clarity of fundus 

photographs by successfully eliminating noises. Later, the InceptionV3 is used to perform feature extraction for 

identifying complicated features and patterns related to DR. The parameter tuning is performed by the moth flame 

optimization (MFO) technique to ensure superior performance of the model. The final diagnoses and classification 

of DR are accomplished utilizing the NSTVS classifiers that easily perform the uncertainties inherent in medicinal 

statistics. The simulation was conducted on a benchmark dataset to examine the proposed model performance. 

This combined method gives a greatly reliable and accurate solution for the earlier diagnosis and detection of DR 

Keywords: Artificial Intelligence; Learning System; Machine learning; Diabetic Retinopathy; Neutrosophic Sets 

1. Introduction 

With the inspiring overview of the fuzzy set (FS), the research of uncertainty observed a major flow in technical 

exploration [1]. This initial thought paved the method for many theoretic additions and generalizations, driving its 

application through numerous areas [2]. These additions contain intuitionistic FS (IFS), cubic set, Pythagorean FS 

(PFS), interval-valued FS (IVFS), interval-valued PFS (IVPFS), and cubic PFS (CPFS), among others [3]. 

Particularly, the overview of the soft set (SS) by Molodsov transformed the parameterization of sub-sets in any 

universal set [4]. Also, Smarandache explained the theory of hypersoft set (HSS), highlighting its importance over 

conventional SS [5]. While FS and its numerous additions are very beneficial numerical techniques to overwhelm 

uncertainty, which is beneficial to utilize these models on the uncertainty issue [6]. Owing to the deficiency of a 

parameterization tool, Molodtsov projected the SS model [7].  

Diabetic retinopathy (DR) is a vision-threatening medicinal disease in which the retina of diabetic patients gets 

injured for a huge amount [8]. It is a secondary disorder that begins in people, who already suffer from Diabetes 

Mellitus [9]. It is one of the most foremost and frequent cases of blindness among adults and children who have 

been suffering from diabetes for a very long time [10]. The sturdy causes and links behind DR are extended periods 

of diabetes, glycaemic control, and poor blood pressure [11]. Presently, deep learning (DL) is normally applied 

for image identification in the field of computer vision (CV). Mainly, the most effective method in the area of CV 

is Convolutional Neural Networks (CNNs) over Transfer Learning (TL) [12]. A Where, a CNN contains a pooling 

layer, a convolution (Conv) layer, and a fully connected (FC) layer. When inventing the Conv layer, we want to 
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study parameters like manifold filters, the dimension of the Conv kernel, and then the sliding window [13]. To 

diminish the network parameter, a pooling layer is inserted among the Conv layers to make simpler the method. 

Lastly, the FC layer performs as a classifier in complete CNN [14]. The feature space gets the original data from 

the Conv and pooling layers and transmits the learned feature over FC layers into the space of the label. Then, the 

features are employed for exact tasks of image processing like recognition and segmentation [15]. 

This manuscript develops a Robust Diabetic Retinopathy Detection and Grading using Neutrosophic Topological 

Vector Space (DRDG-NSTVS) technique on fundus images. The DRDG-NSTVS technique begins with Median 

Filter (MF) noise removal to optimize the clarity of fundus photographs by successfully eliminating noises. Later, 

the InceptionV3 is used to perform feature extraction for identifying complicated features and patterns related to 

DR. The parameter tuning is performed by the moth flame optimization (MFO) technique to ensure superior 

performance of the model. The final diagnoses and classification of DR are accomplished using the NSTVS 

classifiers that easily perform the uncertainties inherent in medicinal statistics. The simulation was conducted on 

a benchmark dataset to examine the proposed model performance.  

2. Related Works 

Hai et al. [16] presented the Diabetic Retinopathy Grading Convolutional Neural Network (DRGCNN) technique. 

This method utilized a more balanced technique by allotting an identical channel number to feature maps depicting 

several DRs. Moreover, the approach presents a CAM-EfficientNetV2-M encoding, which is specifically designed 

to encode input retinal fundus imageries for generating feature vectors. Furthermore, to yield benefit of the 

binocular relationship, the technique inputs fundus retinal imageries from both patient eyes into the network for 

feature fusion at the time of the training stage. In [17], DL techniques are employed for classifying the fundus 

images. Before the training, numerous image pre-processing models are utilized to remove the noise and objects 

from the imageries in order to enhance the excellence. A shallow CNN is presented by employing 3 blocks of max 

pool and convolution layers and is also implemented for determining the optimum data augmentation model. 

Romero-Oraá et al. [18] present an end-to-end DL methodology for automatically grading the DR. The proposed 

model is dependent on a new attention mechanism that concentrates distinctly on the bright and dark retina 

structures by accomplishing a prior image decay. The technique also comprises an image quality evaluation phase 

and DL-based methods, namely transfer learning, data augmentation, and fine-tuning. Yamin et al. [19] proposes 

a DL Enabled Large Scale Healthcare Decision Making for DR (DLLSHDM-DR) technique. In the presented 

model, image pre-processing is achieved to enhance the fundus imagery quality. Additionally, the DLLSHDM-

DR model utilizes HybridNet to produce an ensemble of feature vectors. Furthermore, the approach employs 

Emperor Penguin Optimizer (EPO) and DRNN models for classification. The EPO method helps in the optimum 

alteration of the hyperparameter associated with the DRNN technique. 

Shamrat et al. [20] aim to automate the DR classifying procedure into several phases by employing CNN 

techniques. This approach utilized the accomplishment of 15 pre-trained methods with the new introduced diabetic 

retinopathy network (DRNet13) method. This methodology also intended to discriminate the effectual technique 

for precise DR preformance depending on fundus imageries from 5 DR classes. The model pre-processed the 

image implementing a median filter (MF) for Gamma correction and noise elimination for image enhancement. 

Chavan and Choubey [21] propose a Frame-wise Severity Scale Classification Model (FSSCM) model employing 

TL and EfficientNet-B3 methods. The ResNet 101 approaches such as FT-RN 101 and TL-EN3 models are 

employed for fine-tuning. The Chan-Vese technique is employed for segmentation after pre-processing and 

augmentation procedures. The presented technique also employed the TL-EN3 method for capturing higher-

resolution designs with greater accuracy and incorporates FT-RN 101 methods. 

3. The Proposed Methodology 

In this manuscript, we have developed a robust DRDG-NSTVS technique on fundus images. It encompasses four 

different stages involved MF-based preprocessing, feature extraction using InceptionV3, parameter selection using 

MFO, and NSTVS-based DR classification stages are demonstrated in Fig. 1. 
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Figure 1: Overall process of DRDG-NSTVS technique 

A. Stage I: MF Pre-processing 

Initially, the DRDG-NSTVS technique takes place MF noise removal to optimize the clarity of fundus photographs 

by successfully eliminating noises. MF is a general image processing model utilized for noise smoothing and 

reduction [22]. In this technique, a sliding window is used for every pixel of the image, and the pixel values within 

the window are kept. The central value (median) of this fixed set is then allotted to the pixel below consideration. 

This procedure efficiently removes outliers or random noise in the image, as the median value is less sensitive to 

great values than other statistical measures like the mean. One of the foremost benefits of MF is its capability to 

uphold edges and fine details in an image while efficiently decreasing salt-and-pepper noise or impulse noise. This 

is mainly beneficial in applications where upholding image quality and clarity is vital. In addition, MF is 

computationally effective and direct to implement, making it a general choice in real image processing uses. 

However, it may not be as effective in decreasing Gaussian or uniform noise when equated to other filtering 

approaches exactly intended for such noise kinds. 

B. Stage II: Inceptionv3 Architecture 

Next, InceptionV3 is used to perform feature extraction for identifying complicated features and patterns related 

to DR. The input to the InceptionV3 system is an image of 299x299x3 [23]. The network covers 3 dissimilar 

kinds of inception modules (35x35/17x17/8x8) and dual Grid Size Reduction units. The Grid Size Reduction 

module resolves the issue of feature bottleneck and computational overload and lastly attains image identification 

detection by utilizing the function of softmax. The most significant feature of the InceptionV3 is splitting the 

higher 2D convolutional (Conv) kernel into dual small one‐bit Conv kernels, e.g., decaying a 5x5 Conv kernel 

into two 3x3 Conv kernels, this enhances the network performance and raising the computation speed while 

decreasing the computation cost. Moreover, the network decays symmetric into asymmetric convolution kernels, 

by dividing the 3x3 Conv kernels into 1x3 and 3x1 Conv kernels. The deconvolution kernel technique keeps a 

huge amount of parameters and speeds up the calculation while decreasing over-fitting. And, to resolve the issue 

of feature representation bottleneck and extreme calculation, dual Grid Size Reduction modules have been inserted 

among every 3 Inception Module to diminish the dimension of the feature map by employing a similar dual branch 

structure (pooling and convolution). The fully connected (FC) layer has been nominated for processing, which 

attains a higher level of feature integration. So, we select the FC layer as the data source for the extraction of the 

feature. Fig. 2 depicts the infrastructure of InceptionV3. 
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Figure 2: InceptionV3 architecture 

C. Stage III: MFO Parameter Selection 

At this stage, the parameter tuning is performed by the MFO technique to ensure superior performance of the 

model. MFO is a new metaheuristic approach inspired by the adjacent navigation method of moths [24]. It has a 

distinctive way to navigate during the night-time. By employing a transverse orientation device, it depends on 

moonlight to fly in a straight line that retains a fixed angle. The authors show that the moth location is a adaptable 

in resolving the optimizer problems in MFO technique, and the fame is the current optimum location. Moths get 

closer to the global best location by modifying the position vector. The matrix 𝑀 represents the moth’s location as 

follows: 

𝑀 = [

𝑚1,1 𝑚1,2 … 𝑚1,𝑑

𝑚2,1 𝑚2,2 … 𝑚2,𝑑

⋮ ⋮ ⋮
𝑚𝑛,1 𝑚𝑛,2 … 𝑚𝑛,𝑑

] ’                                                  (1) 

In Eq. (1), 𝑛 and 𝑑 denotes the amount of moths and the size of control variables correspondingly. The fitness 

value is stored in matrix 𝑂𝑀 which represented below: 

𝑂𝑀 = [

𝑂𝑀1

𝑂𝑀2

⋮
𝑂𝑀𝑛

] ’                                                               (2) 

Now 𝑛 denotes the number of moths. 

The MFO technique needs moth to upgrade the location utilizing the exclusive fame equivalent to it that efficiently 

evades local optima. Thus, the moth population is constant. 𝐹 represents the position of fame. 

𝐹 =

[
 
 
 
𝐹1,1 𝐹1,2 … 𝐹1,𝑑
𝐹2,1 𝐹2,2 … 𝐹2,𝑑
⋮ ⋮ ⋮
𝐹𝑛,1 𝐹𝑛,2 … 𝐹𝑛,𝑑]

 
 
 

’                                         (3) 

The matrix 𝑂𝐹 keeps the fitness value of fame: 

𝑂𝑃 = [

𝑂𝐹1
𝑂𝐹2
⋮
𝑂𝐹𝑛

] ’                                                         (4) 

Where 𝑛 denotes the number of moths. 

The search space is inhabited by moths, and every individual hunts for fame by updating and tagging it as the best 

solution. MFO represents the globally best ternary: 

𝑀𝐹𝑂 = (𝐼, 𝑃, 𝑇).                                                   (5) 

The function 𝐼 produces a moth population and the fitness value. 

𝐼: 𝜙 → {𝑀,𝑂𝑀}.                                                    (6) 
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𝑃 indicates the principal function, which moves the moth over the search ranges. Matrix 𝑀 is known by 𝑃, and 

returns the upgraded value. 

𝑃:𝑀 → 𝑀.                                                       (7) 

The function 𝑇 returns true if the terminating condition is met; or else, it returns false. 

𝑇:𝑀 → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}.                                                    (8) 

After initializing function 𝐼, Function 𝑃 changes the moth’s location within the search range. Until the function 𝑇 

returns the true, the iteration is performed. 

The selection of fitness is the significant factor inducing the performance of the MFO model. The hyperparameter 

range method contains the solution encode technique to gauge the efficiency of the candidate solution. In this 

work, the MFO system reflects accuracy as the foremost standard to project the fitness function (FF), which 

expressed below.  

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  max (𝑃)                                                        (9) 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                             (10) 

Here, 𝑇𝑃 signifies the value of true positive and 𝐹𝑃 represents the value of false positive. 

D. Stage IV: NSTVS Architecture 

The final diagnoses and classification of DR are accomplished using the NSTVS classifiers that easily perform the 

uncertainties inherent in medicinal statistics. NTVS is an addition of classical topological vector space to 

accommodate a neutrosophic set (NS), capturing the concept of unknown information, indeterminacy, and 

ambiguity [25]. This explores the intersection of topological vector spaces and NS theory, which offers a thorough 

knowledge of their applications and properties. We investigate the mathematical foundation, that defines an NTVS 

and explore its unique features. The incorporation of neutrosophic logic into these contexts provides an effective 

mechanism for managing imprecise and uncertain data, which makes NTVS an essential basis for many real‐time 

applications. 

Definition 3.1: Consider 𝑁 and 𝑀 as the NS and 𝑋 and 𝑌 as two non‐empty sets. The neutrosophic subset 𝐹 of 

𝑋×𝑌 is a neutrosophic proper function (NPF) from the NS (𝑁) to the (𝑀) if 

(i) 𝐹(𝑥, 𝑦) ≤ 𝑁(𝑥) ∩ 𝑀 for (𝑥, 𝑦) ∈ 𝑋 × 𝑌. 

(ii) For 𝜒 ∈ 𝑋𝑡 there is a unique 𝑦0 ∈ 𝑌 so that 𝐹(𝑥𝑥𝑦0) = 𝑁(𝑥) and 𝐹(𝑥, 𝑦) = (0,1) if 𝑦 ≠ 𝑦0. 

Hence 𝐹:𝑁 → 𝑀 where 𝐹 denotes an NPF from 𝑁 ∈ 𝑁𝑋 into 𝑀 ∈ 𝑁𝑌, where 𝑁𝑋 and 𝑁𝑌 are the group of 𝑋 and 

𝑌 neutrosophic subsets, correspondingly.  

Definition 3.2: A NS 𝑁 = (𝑥, 𝐼𝑁 , 𝜗𝑁) of vector space 𝑋 over 𝐾 is an NVS over 𝑋 if 

𝑁 + 𝑁 + 𝑁 ⊆ 𝑁 

𝛼𝑁 ⊆ 𝑁, for scalar 𝛼. 

Definition 3.3: Assume 𝑁(𝑋) as an NVS over 𝐾 (complex or real) and a 𝜏 topology is determined on it. The set 

𝑁(𝑋) is known as an NTVS if the map is 

𝑁⊕: (𝑉 × 𝑉, 𝜏 × 𝜏) → (𝑉, 𝜏) 

𝑁⊙: (𝑉 × 𝑉, 𝜏 × 𝜏) → (𝑉, 𝜏) 

The couple (𝑁(𝑋), 𝜏) is represented by NTVS. Furthermore, the components of 𝜏 are known as Neutrosophic open 

sets. 

Definition 3.4: NPF: Consider 𝑋 as a vector space over 𝐾 with 𝜃 as a null vector. Assume V as an NVS over X, 

𝑎 ∈ 𝑋 and 𝑘 ∈are fixed.  

𝑁⊕: 𝑉 × 𝑉 × 𝑉 → 𝑉 by 𝑁⊕((𝑥, 𝑦, 𝑧), 𝑡) = {
(𝑉 × 𝑉 × 𝑉)(𝑥, 𝑦, 𝑧) 𝑖𝑓𝑥 + 𝑦 + 𝑧 = 𝑡
(0𝑡1) 𝑖𝑓𝑥 + 𝑦 + 𝑧 ≠ 𝑇

} 
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𝑁⊙: 𝐾 × 𝑉 → 𝑉 by 𝑁⊙((𝑘, 𝑥), 𝑟) = {

𝐾 × (𝑉)(𝑘, 𝑥) 𝑖𝑓𝑘𝑥 = 𝑦, 𝑘 ≠ 0

sup𝑥∈𝑋𝑉(𝑥) 𝑖𝑓𝑘𝑥 = 𝑦, 𝑘 = 0

(0𝑡1) 𝑖𝑓𝑘𝑥 ≠ 𝑦
} 

𝑁𝑎: 𝑉 → 𝑉 by 𝑁𝑎((𝑘, 𝑥), 𝑟) = {
𝑉(𝑥) 𝑖𝑓 𝑦 = 𝑘𝑜𝑥, 𝑘 ≠ 0
(0,1) 𝑖𝑓 𝑘𝑥 ≠ 𝑦

} 

𝑁𝑘0: 𝑉 → 𝑉 by 𝑁𝑘0((𝑥𝑡𝑦)) = {

𝐾 × 𝑉(𝑘, 𝑥) 𝑖𝑓 𝑦 = 𝑘0𝑥, 𝑘0 ≠ 0
sup𝑥∈𝑋𝑉(𝑥) 𝑖𝑓 𝑘0𝑥 = 𝑦, 𝑘0 = 0

(0,1) 𝑖𝑓𝑘0𝑥 ≠ 𝑦
} 

𝑁𝑉
𝐿𝑘,𝑚,𝑛((x, y, z), 𝑡) =

{
  
 

  
 
(𝑉 × 𝑉 × 𝑉)(𝑥, 𝑦, 𝑧), 𝑖𝑓 𝑘𝑥 + 𝑚𝑦 + 𝑛𝑧 = r, k,m, 𝑛 ≠ 0

𝑉(𝑥),             𝑖𝑓 𝑘𝑥 = 𝑟, 𝑘 ≠ 0,m, n = 0

𝑉(𝑦),             𝑖𝑓 𝑚𝑦 = t,𝑚 ≠ 0, k,𝑚 = 0

𝑉(𝑧),             𝑖𝑓 𝑛𝑧 = t, n ≠ 0, k,𝑚 = 0

sup𝑥∈𝑋𝑉(𝑠)       𝑖𝑓𝑘𝑥 + 𝑚𝑦 + 𝑛𝑧 = t, k,m, 𝑛 = 0

(0,1)             𝑖𝑓 𝑘𝑥 +𝑚𝑦 + 𝑛𝑧 ≠ 𝑇 }
  
 

  
 

 

for 𝑥, 𝑦, 𝑧 ∈ x, k,m, 𝑛 ∈ 𝐾. 

Definition 3.5: A NT 𝜏 on 𝑉 is known as a NTVS if the NPF 𝑁⊕: (𝑉 × 𝑉 × 𝑉 → 𝑉, 𝜏 × 𝜏 × 𝜏) → (𝑉, 𝜏) and 

𝑁𝑓𝑐𝑖𝑟𝑐𝑙𝑒 : (𝐾 × 𝑉, 𝜏 × 𝑥) → (V, 𝜏) are NCF. The pair (𝑉, 𝜏) is an NTVS if 𝜏 is an NT on V. 

Definition 3.6: Weaker NTVS: Assume 𝑉 as an NVS over the K. 𝜏 as an NT on 𝑉 then (𝑉, 𝜏) is known as weaker 

NTVS. 

Definition 3.7: Stronger NTVS: Consider 𝑉 as an NVS over the Neutrosophic field 𝐾. 𝜏 as an NT on 𝑉 then (𝑉, 𝜏) 
is known as stronger NTVS. 

Example: 3.8 R(I) is a weaker NTVS over a field 𝑄 and it is a stronger NTVS over a Neutrosophic field 𝑄(𝐼). 

Example: 3.9 R(I) is a weaker NTVS over a field 𝑅 and it is a stronger NTVS. 

Example: 3.10 𝑀𝑚×𝑛(𝑙) = {[𝑎𝑖𝑗]: 𝑎𝑖𝑗 ∈ 𝑄} is a weaker NTVS over a 𝑄 and it is a stronger NTVS over a 

Neutrosophic field 𝑄(𝐼). 

Theorem 3.11 Each stronger NTVS is a weaker NTVS. 

Proof: Assume that 𝜏 is a topology on 𝑉 and 𝑉(𝐼), 𝑉 is weaker NVS 𝑉(𝐼) is stronger NTVS over a Neutrosophic 

field 𝐾(𝐼). Meanwhile 𝐾𝑠𝑢𝑏𝑠𝑒𝑡𝑒𝑞𝐾(𝐼) for field 𝐾, it follows that (𝑉, 𝜏) is a weaker NTVS. 

Theorem 3.12 Each stronger (weaker) NTVS is a topological vector space. 

Proof: Assume that V(I) is a stronger NTVS over a Neutrosophic field 𝐾(𝐼). Noticeably, (𝑉(𝑙), +, . ) is an abelian 

group. 

Assume 𝑢 = 𝑎 + 𝑏𝑙, 𝑣 = 𝑐 + 𝑑𝑙 ∈ 𝑉(𝑙), and 𝛼 = 𝑘 +𝑚𝑙, 𝛽 = 𝑝 + 𝑛𝑙 ∈ 𝐾(𝑙) where 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑉 and 𝑘, 𝑛,𝑚, 𝑝 ∈
𝐾, then 

1). 𝑎(𝑢 + 𝑣) = (𝑘 + 𝑚𝑙)(𝑎 + 𝑏𝑙 + 𝑐 + 𝑑𝑙) 

= 𝑘𝑎 + 𝑘𝑐 + [𝑘𝑏 + 𝑘𝑑 +𝑚𝑎 +𝑚𝑏 +𝑚𝑐 + 𝑚𝑑]𝐼 

= (𝑘 + 𝑚𝑙)(𝑎 + 𝑏𝑙) + (𝑘 + 𝑚𝑙)(𝑐 + 𝑑𝑙) 

= 𝑎𝑢 + 𝑎𝑣. 

2. (𝑎 + 𝑏)𝑢 = (𝑘 + 𝑚𝑙 + 𝑝 + 𝑛𝑙)(𝑎 + 𝑏𝑙) 

= 𝑘𝑎 + 𝑝𝑎 + [𝑘𝑏 + 𝑝𝑏 + 𝑚𝑎 + 𝑛𝑎 + 𝑚𝑏 + 𝑛𝑏]𝐼 

= (𝑘 +𝑚𝑙)(𝑎 + 𝑏𝑙) + (𝑝 + 𝑛𝑙)(𝑎 + 𝑏𝑙) 

= 𝑎𝑢 + 𝑏𝑢 

3. (𝑎𝑏)𝑢 = ((𝑘 + 𝑚𝑙)(𝑝 + 𝑛𝑙))(𝑎 + 𝑏𝑙) 
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= 𝑘𝑝𝑎 + [𝑘𝑝𝑏 + 𝑘𝑛𝑎 + 𝑚𝑝𝑎 + 𝑚𝑛𝑎 + 𝑘𝑛𝑏 + 𝑚𝑝𝑏 +𝑚𝑛𝑏]𝐼 

= (𝑘 + 𝑚𝑙 𝑝 + 𝑛𝑙)(𝑎 + 𝑏𝑙)) 

= 𝑎(𝑏𝑢) 

4. For 1 + 1 + 0𝑙𝐼𝐾(𝐼) we have 

1𝑢 = (1 + 0𝑙)(𝑎 + 𝑏𝑙) 

= 𝑎(𝑏 + 0 + 0)𝐼 

= 𝑎 + 𝑏𝐼. 

Therefore, 𝑉(𝐼) is a vector space. 𝜏 is a topology on 𝑉 over the field, (, 𝜏) is topological vector space. 

Theorem 3.13 A NT 𝜏 on 𝑉 is a NTVS as long as NPF (𝑉 × 𝑉 × 𝑉, 𝜏 × 𝜏 × 𝜏) → (V, 𝜏) is NCF. 

Proof: Assume 𝜏 as a NT 𝜏 on 𝑉 and 𝑘,𝑚, 𝑛 ∈ 𝐾. Meanwhile, 𝑘 ∈ 𝐾 is the normal element of 𝐾 to V, then the 

NPF 

𝑁𝑉
𝐿𝑘,𝑚,𝑛 : (𝑉 × 𝑉 × 𝑉, 𝜏 × 𝜏 × 𝜏) → (V, 𝜏) defined by 

𝑁((x, y, z), 𝑡) = {
𝑉(𝑥, 𝑦, 𝑧) 𝑖𝑓 𝑥 + 𝑦 + 𝑧 = 𝑟
(0,1) 𝑖𝑓 𝑥 + 𝑦 + 𝑧 ≠ 𝑟

} is NCF. 

Also, by definition of NT, 𝑁⊙: (𝐾 × V, 𝑣 × 𝜏) → (V, 𝜏) is NCF. 

Then 𝑁⊙ ∘ 𝑁𝑘: (𝑉, 𝜏) → (𝑉, 𝜏) is defined by 

𝑁⊙ ∘ 𝑁𝑘(x, 𝑦) = {

𝑉(𝑥) 𝑖𝑓𝑦 = 𝑘x, 𝑘 ≠ 0
sup𝑠∈𝑋𝑉(𝑠) 𝑖𝑓𝑦 = 𝑘x, 𝑘 = 0

(0,1) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} is NCF. 

Similarly, 𝑁⊙ ∘ 𝑁𝑚: (𝑉, 𝜏) → (𝑉, 𝜏) defined by 

𝑁⊙ ∘ 𝑁𝑚(z, 𝑡) = {

𝑉(𝑥) 𝑖𝑓 𝑡 = 𝑚x,𝑚 ≠ 0
sup𝑠∈𝑋𝑉(𝑠) 𝑖𝑓𝑦 = 𝑚𝑧, 𝑘 = 0

(0,1) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} is NCF. 

 (𝑁⊙ ∘ 𝑁𝑘) × (𝑁
⊙ ∘ 𝑁𝑚): (𝑉 × 𝑉 × V, 𝜏 × 𝜏 × 𝜏) → (𝑉 × 𝑉 × V, 𝜏 × 𝜏 × 𝜏) described as follows  

(𝑁⊙ ∘ 𝑁𝑘) × (𝑁
⊙ ∘ 𝑁𝑚)((x, 𝑧), (y, 𝑡)) = {

(𝑉 × 𝑉)(x, 𝑧) 𝑖𝑓 (𝑥, 𝑧) = (𝑦, 𝑡)

(0,1)        𝑖𝑓 (𝑥, 𝑧) ≠ (𝑦, 𝑡)
} 

is NCF. Thus, 𝑁⊕ ∘ [(𝑁⊙ ∘ 𝑁𝑘) × (𝑁
⊙ ∘ 𝑁𝑚)] = 𝑁𝑉

𝐿𝑘,𝑚,𝑛
 is NCF. On the other hand, Assume 𝑁𝑉

𝐿𝑘,𝑚,𝑛
 is NCF for 

𝑘, 𝑛,𝑚 ∈ 𝐾. 

Assume the projection mapping 𝑝𝐼: (𝐾 × 𝑉, 𝑣 × 𝜏) → (V, 𝜏) defined as follows: 

𝑝𝐼((k, 𝑥), 𝑧) = {
(𝐾 × 𝑉)(𝑘, 𝑥) 𝑖𝑓 𝑧 = 𝑥
(0,1) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} and 𝜃 is normal of 𝑉, then 𝑁𝜃: (𝑉, 𝜏) → (𝑉 × 𝑉 × 𝑉, 𝜏 × 𝜏 × 𝜏) 

defined by 

𝑁𝜃(𝑥, (𝑥1, 𝑦1)) = {
𝑉(𝑥)      𝑖𝑓 (𝑥1, 𝑦1) = (𝑥. 𝜃)

(0,1)        𝑖𝑓 (𝑥1, 𝑦1) ≠ (𝑥. 𝜃)
}  

are NCF. 

𝑁𝜃 . ∘ 𝑝𝐼 : (𝐾 × 𝑉, 𝑣 × 𝜏) → (V, 𝜏) is described as follows 

𝑁𝜃 ∘ 𝑝𝐼((𝑘𝑡𝑥)𝑡(𝑥12𝑦1) = {
(𝐾 × 𝑉)(𝑘𝑡𝑥) 𝑖𝑓(𝑥1𝑡𝑦1) = (𝑥. 𝜃)
(0𝑡1) 𝑖𝑓(𝑥1𝑡𝑦1) ≠ (𝑥. 𝜃)

} is NCF. Thus 𝑁⊙ = (𝑁𝑉
𝐿𝑘,𝑚,𝑛 ∘ 𝑁𝜃 ∘ 𝑝𝐼) : (𝐾 ×

𝑉, 𝑣 × 𝜏) → (𝑉, 𝜏)𝑡 where 
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(𝑁𝑉
𝐿𝑘,𝑚,𝑛 ∘ 𝑁𝜃 ∘ 𝑝𝐼)((𝑘, 𝑥), 𝑧) = {

(𝐾 × 𝑉)(k, 𝑥) 𝑖𝑓𝑧 = 𝑘x, 𝑘 ≠ 0
sup𝑠∈𝑋𝑉(𝑠) 𝑖𝑓𝑧 = 𝑘x, 𝑘 = 0

(0,1) 𝑖𝑓𝑧 ≠ 𝑘𝑥
} is NCF. Meanwhile 𝑁𝑉

𝐿𝑘,𝑚,𝑛
 is NCF for 

𝑘,𝑚 ∈ 𝐾, taking 𝑘 = 1,𝑚 = 1. We have 

𝑁⊕: (𝑉 × 𝑉 × 𝑉 → V, 𝜏 × 𝜏 × 𝜏) → (𝑉, 𝜏) is NCF. Therefore, it is proved. 

Theorem 3.13: 

Definition 3.13: A NPF 𝑁: 𝑉 → 𝑊 is a neutrosophic linear conversion if 

If 𝑁(𝜃, 𝜃′, 𝜃") = sup(𝑥,𝑦,𝑧)∈(𝑋×𝑌×𝑍)𝑁(𝑥, 𝑦, 𝑧), 

𝑁(𝑘𝑥, 𝑘𝑦, 𝑘𝑧) = {
𝑁(x, y, 𝑧) 𝑖𝑓𝑘 ≠ 0

sup(𝑥′y,𝑧)∈(𝑋×𝑌×𝑍)𝑁(x, y, 𝑧) 𝑖𝑓𝑘 = 0
} 

If 𝑁(𝑘𝑥, 𝑘𝑦, 𝑘𝑧) = 𝑉(𝑥) and 𝑁(𝑚a,𝑚𝑏,𝑚𝑐) = 𝑉(𝑥) imply 

𝑁(𝑘𝑥, 𝑘𝑦, 𝑘𝑧) + 𝑁(𝑚a,𝑚b,𝑚𝑐) = 𝑉(𝑘𝑥 + 𝑚𝑧) for 𝑎, 𝑥 ∈ x, b, 𝑦 ∈ y, c, 𝑧 ∈ 𝑍 and 𝑘,𝑚 ∈ 𝐾. 

Theorem 3.14: Assume 𝑁(𝑋) as an NS in vector space over 𝑋. Then  

𝑁(𝑋) is an NVS over 𝑋. 

For scalar 𝛼, 𝛽 then 𝛼𝑥 + 𝛽𝑥𝑠𝑢𝑏𝑠𝑒𝑡𝑒𝑞𝑁(𝑋)∀𝑥 ∈ 𝑁(𝑋) 

For scalar 𝛼, 𝛽 and for 𝑥𝑡𝑦 ∈ 𝑁(𝑋), then 𝜇𝑁(𝛼𝑥 + 𝛽𝑦) ≥ 𝜇𝑁(𝑥) ∧ 𝜇𝑁(𝑦), 𝑣𝑁(𝛼𝑥 + 𝛽𝑦) ≤ 𝑣𝑁(𝑥) 𝑣𝑣𝑁(𝑦) and 

𝜎(𝛼𝑥 + 𝛽𝑦) ≤ 𝜎𝑁(𝑥) + 𝜎𝑁  

Proof: Obviously (1) ⇒ (2) and (2) ⇒ (3) by the definition of NVS. 

To prove (2) ⇒ (1) : 𝑁(𝑋) + 𝑁(𝑥) = 1.𝑁(𝑋) + 1.𝑁(𝑥) ⊆ 𝑁  

𝛼𝑁(𝑋) = 𝛼𝑁(𝑋) + 𝑂𝑁(𝑋) ⊆ 𝑁(𝑋) This proves the condition. 

4. Result Analysis and Discussion 

In this part, the performance validation result of the DRDG-NSTVS technique using the DR dataset. The dataset 

includes 1744 images with five classes labels as showed in Table 1. 

Table 1: Details on Dataset 

Classes No. of Images 

NoDR (Grade 0) 1017 

MildNPDR (Grade  1) 270 

Moderate NPDR (Grade 2) 347 

Severe NPDR (Grade 3) 75 

PDR (Grade 4) 35 

Total Images 1744 

The DR detection results of the DRDG-NSTVS technique are inspected in Table 2 and Fig. 3. The outcomes 

performed that the DRDG-NSTVS model gets enhanced recognition results under 5 classes. With 70%TRAS, the 

DRDG-NSTVS technique provides average 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑠𝑒𝑛𝑠𝑦 , 𝑠𝑝𝑒𝑐𝑦, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 98.30%, 91.14%, 78.72%, 

98.58%, and 82.83%, respectively. Besides, with 30%TESS, the DRDG-NSTVS model delivers average 𝑎𝑐𝑐𝑢𝑦, 

𝑝𝑟𝑒𝑐𝑛, 𝑠𝑒𝑛𝑠𝑦 , 𝑠𝑝𝑒𝑐𝑦, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 98.09%, 95.23%, 83.94%, 98.10%, and 88.45%, correspondingly.   

Table 2: DR detection outcome of DRDG-NSTVS technique on 70%TRAS and 30%TESS 

Class labels 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 𝑭𝑺𝒄𝒐𝒓𝒆 

TRAS (70%) 

NoDR 97.54 97.08 98.73 95.91 97.90 

Mild NPDR 98.93 96.91 96.41 99.41 96.66 

Moderate NPDR 98.44 93.10 99.59 98.16 96.24 
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Severe NPDR 98.03 85.29 60.42 99.57 70.73 

PDR 98.52 83.33 38.46 99.83 52.63 

Average 98.30 91.14 78.72 98.58 82.83 

TESS (30%) 

NoDR 95.80 95.00 98.06 92.52 96.51 

Mild NPDR 98.09 94.52 92.00 99.11 93.24 

Moderate NPDR 99.43 97.17 100.00 99.29 98.56 

Severe NPDR 97.71 89.47 62.96 99.60 73.91 

PDR 99.43 100.00 66.67 100.00 80.00 

Average 98.09 95.23 83.94 98.10 88.45 

 

Figure 3: Average outcome of DRDG-NSTVS technique on 70%TRAS and 30%TESS 

Inspecting the precision-recall (PR) curve, as presented in Fig. 4, the analysis certified that the DRDG-NSTVS 

technique increasingly achieves enhanced PR values below every classes. It confirms the upgraded skills of the 

DRDG-NSTVS system in the classification of diverse class labels, presenting the ability the recognize classes.  

Likewise, in Fig. 5, ROC curves created by the DRDG-NSTVS system outdid the identification of dissimilar 

labels. It offers a complete understanding of the trade-off amongst TPR and FRP over discrete detection values of 

threshold and epoch counts. The outcome underlined the superior classifier results of the DRDG-NSTVS technique 

below every class, outlining the efficacy in addressing several classification problems. 
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Figure 4: PR curve of the DRDG-NSTVS technique 

 

Figure 5: ROC curve of the DRDG-NSTVS technique 

In Table 3, a complete comparison study of the DRDG-NSTVS method with recent techniques is given [17, 26].  

Fig. 6 demonstrates the 𝑎𝑐𝑐𝑢𝑦 and 𝑝𝑟𝑒𝑐𝑛 result of the DRDG-NSTVS method. The experimental results implied 

the enhanced efficiency of the DRDG-NSTVS approach. Based on 𝑎𝑐𝑐𝑢𝑦, the DRDG-NSTVS system gets 

increased 𝑎𝑐𝑐𝑢𝑦 of 98.30% while the RBFN Network, KNN, UNet, and CNN with SVM, CNN, DCNN+SVMGA, 

SVM-GA, and LRDL-WDRI approaches get reduced 𝑎𝑐𝑐𝑢𝑦 of 93.25%, 95.05%, 94.94%, 95.79%, 97.38%, 

96.78%, and 94.45%, correspondingly.  

Table 3: Comparative analysis of DRDG-NSTVS technique with recent approaches 

Models 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 

RBFN Network 93.25 83.56 74.76 93.00 

KNN Classifier 95.05 88.15 75.54 92.30 

UNet and CNN with SVM 94.94 88.19 74.10 98.08 

CNN Algorithm 95.79 85.88 73.76 93.49 

DCNN+SVMGA 97.38 85.01 67.18 94.32 

SVM-Genetic Algorithm 96.78 81.36 64.66 95.73 

LRDL-WDRI 94.45 86.53 69.27 96.32 

DRDG-NSTVS 98.30 91.14 78.72 98.58 
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Figure 6: 𝐴𝑐𝑐𝑢𝑦 and 𝑝𝑟𝑒𝑐𝑛 analysis of DRDG-NSTVS technique with recent approaches 

Also, based on 𝑝𝑟𝑒𝑐𝑛, the DRDG-NSTVS model gains enlarged 𝑝𝑟𝑒𝑐𝑛 of 91.14% where the RBFN Network, 

KNN, UNet and CNN with SVM, CNN, DCNN+SVMGA, SVM-GA, and LRDL-WDRI methodologies obtain 

decreased 𝑝𝑟𝑒𝑐𝑛 of 83.56%, 88.15%, 88.19%, 85.88%, 85.01%, 81.36%, and 86.53%, correspondingly. 

 

Figure 7: 𝑆𝑒𝑛𝑠𝑦 and 𝑠𝑝𝑒𝑐𝑦 analysis of DRDG-NSTVS technique with recent approaches 

Fig. 7 explains the 𝑠𝑒𝑛𝑠𝑦  and 𝑠𝑝𝑒𝑐𝑦 outcome of the DRDG-NSTVS method. The experimental results implied the 

improved efficiency of the DRDG-NSTVS model. Based on 𝑠𝑒𝑛𝑠𝑦 , the DRDG-NSTVS system gains improved 

𝑠𝑒𝑛𝑠𝑦  of 78.72% but the RBFN Network, KNN, UNet and CNN with SVM, CNN, DCNN+SVMGA, SVM-GA, 

and LRDL-WDRI methodologies get decreased 𝑠𝑒𝑛𝑠𝑦  of 74.76%, 75.54%, 74.10%, 73.76%, 67.18%, 64.66%, 

and 69.27%, correspondingly. Similarly, based on 𝑠𝑝𝑒𝑐𝑦, the DRDG-NSTVS approach gains improved 𝑠𝑝𝑒𝑐𝑦 of 

98.58% whereas the RBFN Network, KNN, UNet and CNN with SVM, CNN, DCNN+SVMGA, SVM-GA, and 

LRDL-WDRI techniques obtain decreased 𝑠𝑝𝑒𝑐𝑦 of 93.00%, 92.30%, 98.08%, 93.49%, 94.32%, 95.73%, and 

96.32%, correspondingly. 
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5. Conclusion  

In this manuscript, we have proposed a robust DRDG-NSTVS approach on fundus images. It encompasses four 

different stages involving MF-based preprocessing, feature extraction using InceptionV3, parameter selection 

using MFO, and NSTVS-based DR classification stages. Initially, the DRDG-NSTVS technique takes place MF 

noise removal to optimize the clarity of fundus photographs by successfully eliminating noises. Later, the 

InceptionV3 is used to perform feature extraction for identifying complicated features and patterns related to DR. 

The parameter tuning is performed by the MFO technique to ensure superior performance of the model. The final 

diagnoses and classification of DR are accomplished using the NSTVS classifiers that easily perform the 

uncertainties inherent in medicinal statistics. The simulation was conducted on a benchmark dataset to examine 

the proposed model performance. This combined method gives a greatly reliable and accurate solution for the 

earlier diagnosis and detection of DR. 
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