
International Journal of Neutrosophic Science (IJNS) Vol. 26, No. 02, PP. 241-250, 2025

Clean Graphs over Rings of Order P 2

Heba Adel Abdelkarim1, Edris Rawashdeh2, Eman Rawshdeh3,∗

1Department of Mathematics, Irbid National University, Irbid, Jordan
2Department of Mathematics, Yarmouk University, Irbid, Jordan

3Department of Basic Scientific Sciences, Al-Huson University College, Al-Balqa Applied University, Irbid,
Jordan

Emails: dr.heba@inu.edu.jo; edris@yu.edu.jo; eman.rw@bau.edu.jo

Abstract

Assume R is a commutative ring with unity. The clean graph CL(R) is defined in which every vertex has the
form (a, v),where a is an idempotent inR and v is a unit. InCL(R), two distinct vertices (a1, v1) and (a2, v2)
are adjacent if a1a2 = a2a1 = 0 or v1v2 = v2v1 = 1. In this paper, we show that the clean graph CL(R) over
a ring of order p2 can be defined only if R is one of the rings: Zp2 , Zp ⊕Zp, Zp(+)Zp and GF (p2). Then, we
study the spectrum, the biclique partition number, and the eigensharp property for the these clean graphs.

Keywords: Commutative Ring; Clean Graph; Spectrum of graph; Biclique partition number; Eigensharp
graph

1 Introduction

The construction of graphs that are related with algebraic structures is a fundamental area in a modern graph
theory. In fact, many properties can be better understood when studied theoretically with the graph that rep-
resents this algebraic structure. In particular, the study of graphs related to commutative rings is one of the
most dynamic research areas in this field as it plays a crucial role as an algebraic structure in mathematics, for
example one can see,3,4 and.5

One of the interesting concept is the zero divisor graph of rings which was introduced by Beck7 in 1988.
Linking a ring to a graph in the analysis of zero-divisor graphs offers a glimpse into the algebraic properties
of rings, focusing on the zero-divisor set’s structure.

Akbari et al.2 introduced the idempotent graph, I(R), with non-trivial idempotents of the ring R as vertices
and two vertices are adjacent in I(R) if and only if their product is zero. An element of a ring is said to be
clean if it can be written as the sum of an idempotent element and a unit. A ring is called a clean ring if all
the elements of the ring are clean. For a ring R, the clean graph CL(R) is defined to be the graph in which
every vertex has the form (u, v) where, u is an idempotent in the ring R and v is a unit. Two distinct vertices
(u1, v1) and (u2, v2) in CL(R) are adjacent if and only if u1u2 = u2u1 = 0 or v1v2 = v2v1 = 1.

Nicholson16 in 1977 was the first to introduce the clean rings. Habibi et al.13 presented the innovative notion
of a clean graph denoted as Cl(R) for a given ringR and determined the clique number, the chromatic number
and the domination number of the clean graph Cl(R) for some classes of rings. Investigating the placement
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of clean graphs representing commutative rings on different surfaces has been studied in.19 In17 it has been
proved that Cl(R) is connected if and only if R is additively generated by its idempotents. More literature and
contribution on clean graphs can be seen in.19

An important concept in graph theory is the use of subgraphs from a specific graph family to cover a graph.
There has been extensive research on various types of graph covering. Including, for instance tree covering,
cycle covering, edge covering and star covering, see10 and.6

A biclique is a maximal induced complete bipartite subgraph of a graph. A biclique partition covering of a
graph G is a collection LG = {W1,W2, ...,Wj} of complete bipartite subgraphs of G such that for every
i = 1, 2, ..., j, there is only one Wi ∈ LG such that e ∈ E (Wi) for each edge e ∈ E (G) . The smallest
cardinality of any biclique partition of a graph G is called the biclique partition number of G, and is denoted
by bp(G). The biclique partition number has many uses in different areas of applied science such as network
addressing,12 immunology15 and automata theory.8

The adjacency matrix of a graph G with vertex set V (G) and edge set E(G), denoted by A(G), is a square
matrix of order |V (G)| where the ij-th entry equals to 1 in the case where vivj is an edge of G and to 0 in the
other case.

Since the adjacency matrix A(G) of the graph G is symmetric; then it’s eigenvalues are real. the number of
positive, negative and zero eigenvalues are denoted by r+ (A (G)) , r− (A (G)) and r0 (A (G)), respectively.

It is clear that for anon-null graph G, r+ (A (G)) > 0 and r− (A (G)) > 0. It has been proved (see, for
example,12) that

bp(G) ≥ max {r+ (A(G)), r (A(G))} .

A graph G is called an eigensharp when bp(G) = max {r+ (A(G)), r− (A(G))} . The eigensharp graphs
include specific groups of graphs, such as complete graphs Kn, complete bipartite graphs Kn,m, and cycle
graphs Cn with n ̸= 4k, k ≥ 2. In fact bp(Kn,m) = 1, bp(Kn) = n − 1, and bp(Cn) =

⌈
n
2

⌉
, see,11,12 ,14

and.18

The number of linearly independent eigenvectors that are associated with an eigenvalue λi is known as its
multiplicity. If λi, 1 ≤ i ≤ l, are the distinct eigenvalues of the adjacency matrix A(G) with multiplicity qi,

then σ(A(G)) =
(
λ1 λ2 ... λl
q1 q2 ... ql

)
is called the spectrum of G.

In this paper, we study the clean graphs over rings of order p2. In particular, we find the spectrum of the
adjacency matrix of these graphs and we show that they are eigensharp.

2 Preliminaries

Let R be a ring of order p2. By the fundamental theorem of finitely generated abelian groups, the additive
abelian group related to R is a direct product of cyclic groups Cpj = ⟨a; pja = 0⟩, where 1 ≤ j ≤ 2 and∑
j = 2. Thus, if R is a finite ring of order p2, its additive group is isomorphic to Cp2 or Cp × Cp.

A commutative ring with unity is said to be local if it has a unique maximal ideal. For any prime p, the ring
Zpn is a local ring having the unique maximal ideal containing the set of all multiples of p. An element e in
a ring R is said to be an idempotent if e2 = e. It is generally known that, the only idempotent elements in a
local ring are 0 and 1.

Throughout the paper, Zp ⊕ Zp is the ring defined as the ring of all ordered 2-tuples (a, b) from Zp for which
addition and multiplication are defined componentwise (modp). The ring Zp(+)Zp is defined to be the set of
all ordered 2-tuples from Zp with componentwise addition (modp), and multiplication as:

(a, b)(c, d) = (ac(modp), ad+ bc(modp)).
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The set of units in the ring Zp is Zp\{0}. The set {(a, b) : a, b ∈ Zp\{0}} represents the set of units in
the ring Zp ⊕ Zp. In Zp(+)Zp, the unity is (1, 0), and (a, b) is a unit if and only if a is a unit in Zp, where
(a, b)−1 = (a−1,−ba−2). Therefore, the set of units in the ring Zp(+)Zp is {(a, b) : a ∈ Zp\{0}}.

Waterhouse21 classified the rings of order m with an additive cyclic group Cm. The result is shown in Propo-
sition 2.1. Fine9 extended the result introduced in21 and demonstrated that there are precisely 11 rings of order
p2 up to isomorphism.

Proposition 2.1. 21 If R is a ring with an additive cyclic group Cm, then up to isomorphism, for each divisor
d of m there is a ring Rd = ⟨a;ma = 0, a2 = da⟩ where a is an additive generator of Cm.

Therefore, if R is a ring with a cyclic additive group Cp2 , by Proposition 2.1, R is isomorphic to R1 =
⟨a; p2a = 0, a2 = a⟩, or to Rp = ⟨a; p2a = 0, a2 = pa⟩, or to Rp2 = ⟨a; p2a = 0, a2 = 0⟩.

Remark 2.2. The ring R1 = ⟨a; p2a = 0, a2 = a⟩ is isomorphic to the ring Zp2 .

Assume R is a ring with the additive group Cp × Cp. Then R has the representation:

R = ⟨a, b; pa = pb = 0, ab = α1a+ β1b, ba = α2a+ β2b⟩,

for αi, βi ∈ Zp and i = 1, 2.

Next, we describe the most essential 3 rings that will form as a result.

Remark 2.3. Let R be a ring with the additive group Cp × Cp.

1. If ab = ba = 0, then R is isomorphic to the ring Zp ⊕ Zp with respect to the homomorphism φ defined
by, φ(a) = (1, 0) and φ(b) = (0, 1).

2. If R = ⟨a, b; pa = pb = 0, a2 = 0, b2 = b, ab = ba = a⟩, then, an isomorphism ψ can be defined from
R into the ring Zp(+)Zp such that ψ(a) = (0, 1) and ψ(b) = (1, 0). Hence, R is isomorphic to the ring
Zp(+)Zp.

3. If R =

{
⟨a, b; 2a = 2b = 0, a2 = a, b2 = a+ b, ab = b, ba = b⟩, p = 2
⟨a, b; pa = pb = 0, a2 = a, b2 = ja, ab = b, ba = b⟩, if j ̸= x2∀x ∈ Zp, p ̸= 2

, then, by,9

R is isomorphic to the finite field GF (p2).

4. The remaining five p2 rings that were discovered by9 are:

R = ⟨a, b; pa = pb = 0, a2 = a, b2 = b, ab = a, ba = b⟩
R = ⟨a, b; pa = pb = 0, a2 = a, b2 = b, ab = b, ba = a⟩
R = ⟨a, b; pa = pb = 0, a2 = 0, b2 = b, ab = ba = 0⟩
R = ⟨a, b; pa = pb = 0, a2 = b, ab = 0⟩
R = ⟨a, b; pa = pb = 0, a2 = b2 = 0⟩

In fact, the only p2 rings exhibiting clean associated graphs are Zp2 , Zp(+)Zp, GF (p
2) and Zp ⊕ Zp. The

remaining rings lack a unity, making it impossible to identify clean graphs associated with them. See Remark
3 in.1
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3 The spectrum of the clean graphs CL
(
Zp2

)
, CL (Zp(+)Zp) , CL

(
GF (p2)

)
,and CL(Zp ⊕ Zp)

In this section, we find the adjacency matrix and the spectrum of the clean graphsCL(Zp2), CL(Zp(+)Zp), CL(GF (p
2))

and CL(Zp ⊕ Zp).

Throughout, let s be an even positive integer greater than or equal to 5, Js be the all-1 matrix of order s,A(Ks)
be the adjacency matrix of the complete graph Ks, Fs and Qs be matrices of order s defined by

(Fs)i,j =



0, if i or j ∈ {1, 2},
0, if i = j,

1, if j = i+ 1 and j ≥ 4 is even,
1, if j = i− 1 and j ≥ 3 is odd,
0, otherwise,

(1)

and

(Qs)i,j =



0, if i or j ∈ {1, 2, 3, 4},
0, if i = j,

1, if j = i+ 1 and j ≥ 6 is even,
1, if j = i− 1 and j ≥ 5 is odd,
0, otherwise.

(2)

The following lemma will be used frequently through the remainder of the paper.

Lemma 3.1. Suppose the matrix Fs is defined by (1). The spectrum of the the block matrix

H =

[
A(Ks) Js
Js Fs

]
is given by

σ(H) =

(
0 1 −1 λ1 λ2 λ3
0 s−4

2
3s−4

2 1 1 1

)
(3)

where λ1, λ2, and λ3 are the roots of the polynomial

p(x) = x3 − sx2 − (s2 − s+ 1)x+ 2s.

Proof. Let X be an eigenvector of the matrix H , then if we look deeply to the construction of the matrix H ,
we may consider the entries of the vector X to be

xi =


ai, if i = 1, 2, . . . , s,

bi−s, if i = s+ 1, s+ 2,

ci−s−2, if i = s+ 3, s+ 4, . . . , 2s.

.

Since, we have to find λ so that HX = λX , then for j = 1, 2, . . . , s

s∑
i=1,i̸=j

ai + b1 + b2 +

s−2∑
i=1

ci = λaj . (4)

The s+ 1−th and s+ 2−th entries of X have to satisfy

s∑
i=1

ai = λb1 = λb2. (5)

In the same manner, for j = 2, 4, . . . , s− 2, we get

s∑
i=1

ai + cj = λcj−1 (6)
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and
s∑

i=1

ai + cj−1 = λcj .l (7)

It is clear that if λ ̸= −1, then from equations (4), we get a1 = a2 = · · · = as = a.

Case 1. λ /∈ {0, 1,−1}.

By subtracting equation (7) from equation (6), we obtain cj−1 = cj for j = 2, 4, . . . , s − 2. From equation
(5), b1 = b2 and b1 = sa

λ . Now, by subtracting equation (5) from (6), we get

(λ− 1)cj = λb1,

and so
s−2∑
j=1

cj =
s(s− 2)

λ− 1
a.

Thus, equation (4) becomes

(s− 1)a+ 2
sa

λ
+
s(s− 2)

λ− 1
a = λa. (8)

It is clear that a has to be a nonzero constant so that X is an eigenvector corresponding to λ /∈ {0, 1,−1}.
Thus from equation (8), λ must satisfy

p(x) = x3 − sx2 − (s2 − s+ 1)x+ 2s.

This means the matrix H has at least three eigenvalues of multiplicity one. It is not difficult to show that the
polynomial p(x) has three distinct roots, with exactly one of them being negative.

Case 2. λ = 0.

Equations (5) implies a1 = a2 = · · · = as = 0, and so from equation (6), we get c1 = c2 = · · · = cs−2 = 0.
Thus equation (4) gives b2 = −b1.

Hence, the eigenspace for λ = 0 has bases only one vector which can be

(0, 0, . . .
s
, 0, 1,−1, 0, 0, . . .

s−2
, 0)T .

Case 3. λ = 1.

By subtracting equation (7) from equation (6), we obtain cj−1 = cj for j = 2, 4, . . . , s − 2. Therefore,
equation (7) and (6) give a1 = a2 = · · · = as = 0 and b1 = b2 = 0, respectively. Finally from equation (4),
we conclude that

∑s−2
i=1 ci = 0. Thus, the eigenspace for λ = 1 has dimension s−2

2 − 1 = s−4
2 .

Case 4. λ = −1.

From equation (7), we obtain
s∑

i=1

ai = − 2

s− 2

s−2∑
i=1

ci.

Thus equation (5) implies b1 = b2 = 2
s−2

∑s−2
i=1 ci and equation (4) gives

−2

s− 2

s−2∑
i=1

ci +
4

s− 2

s−2∑
i=1

ci +

s−2∑
i=1

ci =
s

s− 2

s−2∑
i=1

ci = 0.

Thus for s > 2, we get
∑s−2

i=1 ci = b1 =
∑s

i=1 ai = 0 and so from equation (6), we have cj = −cj−1 for
j = 2, 4, . . . , s− 2. Therefore, the eigenspace for λ = −1 has dimension s− 1 + s−2

2 = 3s−4
2 .
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Now, consider the clean graph CL(Zp2). Since Zp2 is local ring, the idempotent elements are 0 and 1. Fur-
thermore, as Zp2 = {i + jp : i, j ∈ Zp}, the set of units is U = Zp2⧹{ip : 0 ≤ i ≤ p − 1} with
(i+ jp) = (i+ jp)−1 only if i = 1 or i = p− 1 and j = 0.

Let G = CL(Zp2) and V0 = {(0, x) : x ∈ U} and V1 = {(1, x) : x ∈ U} be a partition of V (G). Let G0 and
G1 denote the induced subgraphs corresponding to the vertex sets V0 and V1, respectively. Since each vertex
in V0 has 0 as its initial component, G0 is a complete graph isomorphic to Kp2−p. Also, each vertex in V0 is
adjacent with each vertex in V1. Moreover, two distinct vertices in V1, are adjacent if they have x and x−1 as
second component. But the two vertices (1, 1) and (1, p − 1) are not adjacent to any vertex in V1. Therefore,
and by using Lemma 3.1, we have the following lemma.

Lemma 3.2. The adjacency matrix of the clean graph CL(Zp2) can be expressed as

A(CL(Zp2)) =

[
A
(
Kp2−p

)
J

p2−p

J
p2−p

Fp2−p

]
.

Moreover, the spectrum of the matrix A(CL(Zp2)) is given by equation (3) with s = p2 − p.

Now, we consider the clean graphs CL(Zp(+)Zp) and CL(GF (p2)). As indicated previously, we shall define
the adjacency matrix for both. Before that, we will clarify some notes related to each ring.

Remark 3.3. In Zp(+)Zp, the set of idempotents is {(0, 0), (1, 0)} and (x, y) is a unit if and only if x ̸= 0
(modp).

Remark 3.4. If (x, y) is a unit in Zp(+)Zp, then (x, y)−1 ̸= (x, y) unless, x = 1 or x = p − 1 and y = 0
(modp).

The ring GF (p2), according to Remark 2.3 (part (3)), is defined as

GF (p2) =

{
⟨a, b; 2a = 2b = 0, a2 = a, b2 = a+ b, ab = b, ba = b⟩, p = 2
⟨a, b; pa = pb = 0, a2 = a, b2 = ja, ab = b, ba = b⟩, if j ̸= x2 ∀x ∈ Zp, p ̸= 2

.

Since GF (p2) is a finite field, we have the following well-known result.

Remark 3.5. The unity for the ringGF (p2) is a, and hence the idempotent elements are 0 and a. Furthermore,
every nonzero element in GF (p2) is a unit with x ̸= x−1 except for x = a or x = −a.

Now, according to Remarks 3.3 and 3.5, we only have two distinct idempotents 0 and 1, and hence, the
vertex set can be represented as a union of a two basic sets V0 and V1, where V0 is the set in which the
initial component for each vertex is the zero idempotent element and V1 is the set in which the non-zero
idempotent element, say 1, is the initial component. Analogous to the clean graph CL(Zp2), consider the
induced subgraphsG0 andG1 corresponding to the vertex sets V0 and V1 respectively. Then, G0 is isomorphic
to a complete graph. Also, it is clear that, every vertex inG0 is adjacent with every vertex inG1. For the graph
G1, recall that a vertex has the form (1, x), where x is a unit. Thus two distinct vertices in G1 are adjacent if
their second components are x and x−1 respectively. Referring to Remarks 3.4 and 3.5, two elements exists,
say 1 and −1, that are the inverses for themselves. Let s to be the number of units in each ring. Then, the
related vertices (1, 1) and (1,−1) are not adjacent with any vertex in G1, and so, G1 is a disconnected graph
decomposed as the union of s−2

2 paths of order 2, namely [(1, x), (1, x−1)], x /∈ {0, 1,−1}. Therefore, the
adjacency matrices for the graphs G0 and G1 are A(G1) = A(Ks) and A(G2) = Fs. Thus, and by using
Lemma 3.1, we have the following lemma.

Lemma 3.6. The adjacency matrix of the clean graphs CL(Zp(+)Zp) and CL(GF (p2)) can be expressed as

A(CL(Zp(+)Zp)) =

[
A(Kp2−p) Jp2−p

Jp2−p Fp2−p

]
and A(CL(GF (p2))) =

[
A(K(p2−1)) J(p2−1)

J(p2−1) F(p2−1)

]
,

respectively. Moreover, the spectrum of the matrices A(CL(Zp(+)Zp)) and A(CL(GF (p2))) are given by
equation (3) with s = p2 − p and s = p2 − 1, respectively.
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Remark 3.7. Since the adjacency matrix ofCL
(
Zp2

)
andCL(Zp(+)Zp) are equal, the graphsCL(Zp(+)Zp)

and CL
(
Zp2

)
are isomorphic.

Now we are in a position to find the adjacency matrix of the clean graph CL(Zp ⊕ Zp).

Let R = Zp ⊕ Zp. Consider the clean graph G = CL(R). The vertex set V (G) is the set of all ordered pairs
((a, b), (c, d)) where, (a, b) is an idempotent in R and (c, d) is a unit. By Remark 3.8, we review some of the
basic properties of V (G).

Remark 3.8. The element (c, d) is a unit inR if and only if c and d are units in Zp, i.e. if a, b ∈ Zp⧹{0}.Note
that, (c, d)−1 ̸= (c, d) unless c, d ∈ {1, p−1}. The set of idempotent elements inR is I = {(0, 0), (1, 0), (0, 1), (1, 1)}.
Since the number of units in R is (p− 1)2, so the order of V (G) is 4(p− 1)2.

Lemma 3.9. The adjacency matrix of the clean graph CL(Zp ⊕ Zp) is given by

A(CL(R)) =


A(K(p−1)2) J(p−1)2 J(p−1)2 J(p−1)2

J(p−1)2 Qs J(p−1)2 Qs

J(p−1)2 J(p−1)2 Qs Qs

J(p−1)2 Qs Qs Qs

 , (9)

where Qs is defined by (2).

Proof. Consider R to be Zp ⊕Zp. Let G = CL(R) and let I to be the set of idempotent elements in R. Then,
the vertex set V (G) can be partitioned as a union of the sets:

Vi = {((a, b), (c, d)) : (a, b) ∈ I, c, d ∈ Zp⧹{0}}, 1 ≤ i ≤ 4,

where (0, 0) is the initial component of each vertex in V1, (1, 0) is the initial component of each vertex in V2
and so on. Now, let Gi be the induced subgraph corresponding to the vertex sets Vi. Since G1 is isomorphic
to the complete graph K(p−1)2 , then A(G1) = A(K(p−1)2). Additionally, every vertex in G1 is adjacent
to every vertex in G2, G3 and G4. Also, since the initial components in V2 and V3 are (1, 0) and (0, 1)
respectively, every vertex in G2 is adjacent to every vertex in G3. Hence, A(G) containing the block matrix
J(p−1)2 corresponding to the adjacency between the vertices of V1 and Vj for 2 ≤ j ≤ 3, and corresponding
to the adjacency between a vertices of V2 and V3. In the other cases, for i = j ≥ 2 and for i = 2 and
3 ≤ j ≤ 4, the adjacency between the vertices of Vi and Vj depends on the second component. Since
(1, 1), (1, p−1), (p−1, 1) and (p−1, p−1) are the inverses for themselves, thus the block matrixQ describes
the adjacency related to the subgraphs that will be induced. Therefore, the adjacency matrix for the graph
CL(R) is given by (9).

Remark 3.10. The spectrum of the matrix A(CL(= Zp ⊕ Zp)) has been investigated in.20

4 The eigensharp property for the clean graphsCL
(
Zp2

)
,CL (Zp(+)Zp),CL

(
GF (p2)

)
, andCL(Zp⊕

Zp)

In this section, we show that the clean graphs CL
(
Zp2

)
, CL (Zp(+)Zp), CL

(
GF (p2)

)
, and CL(Zp ⊕ Zp)

are eigensharps.

Theorem 4.1. The clean graph CL(Zp2) is eigensharp.

Proof. Let G = CL(Zp2) and U = Zp2⧹{ip : 0 ≤ i ≤ p− 1}. Recall that V (G) = {(e, u) : e ∈ {0, 1}, u ∈
U} has an order 2

(
p2 − p

)
.

Now, from Lemma 3.2, the adjacency matrix of the graph G is

A(G) =

[
A(K(p2−p)) J(p2−p)

J(p2−p) F(p2−p)

]
.
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Therefore, by Lemma 3.1 we have

σ(A(G)) =

(
0 1 −1 λ1 λ2 λ3

0 p2−p−4
2

3(p2−p)−4

2 1 1 1

)
,

where λ1, λ2 and λ3 are the roots of the polynomial

p (λ) = λ3 − (p2 − p)λ2 −
((
p2 − p

)2 − (p2 − p) + 1
)
λ+ 2

(
p2 − p

))
.

Thus bp(G) ≥ max
{
r−
(
A(CL(Zp2))

)
, r+

(
A(CL(Zp2))

)}
=

3(p2−p)−2

2 . On the other hand, the vertex set
V (G) can be partitioned into the sets V0 = {(0, x) : x ∈ U} and V1 = {(1, x) : x ∈ U}. Let G0 and G1 be
the induced subgraph corresponding to the vertex sets V0 and V1, respectively. Then G0 is clearly isomorphic
to the complete graph K

p2−p
and thus by,12 G0 can be covered by p2 − p − 1 bicliques. Let B (V0, V1) be

the biclique subgraph related to the sets V0 and V1. Then, B (V0, V1) ≃ Kp2−p,p2−p and B (V0, V1) covers all
edges with endpoints from the independent sets V0 and V1.

Consider the graph G1. Since the vertices (1, 1) and (1, p − 1) are not adjacent to any other vertex in the set
V1; the graph G1 is disconnected. Also, the vertex (1, x) such that x /∈ {1, p − 1} is adjacent to a vertex
(1, x−1). Thus G1 contains p2−p−2

2 components that isomorphic to the line graph P
2
, namely Pxx−1 , which

are bicliques. So, we have a biclique partition of CL
(
Zp2

)
with cardinality

3(p2−p)−2

2 . Hence, bp(G) =
3(p2−p)−2

2 and so CL(Zp2) is eigensharp.

In Remark 3.7, we have noticed that the two graphs CL
(
Zp2

)
and CL(Zp(+)Zp) are isomorphic. Hence we

conclude the following.

Corollary 4.2. The clean graph CL(Zp(+)Zp) is eigensharp.

Now, consider the clean graph G = CL(GF (p2)). Recall that, a is the unity of the ring ring GF (p2), and so a
is the only nonzero idempotent element in this ring, see Remark 3.5. Also, by Lemma 3.6, we have determined
the adjacency matrix of G.

In the following theorem, we show that G is an eigensharp graph.

Theorem 4.3. The clean graph CL
(
GF (p2)

)
is eigensharp.

Proof. Let G = CL(GF (p2)). By Lemma 3.1, we have

bp(G) ≥ max
{
r−
(
CL

(
GF (p2)

))
, r+

(
CL

(
GF (p2)

))}
=

3p2 − 5

2
.

On the other hand, G has 2
(
p2 − 1

)
vertices such that V (G) can be partitioned into the sets V1 = {(0, x) :

x ∈ GF (p2), x ̸= 0} and V2 = {(a, y) : y ∈ GF (p2), x ̸= 0}. Let G1 and G2 be the induced subgraphs
according to the vertex sets V1 and V2, respectively. Then G1 ≃ Kp2−1, and so by12 G1 can be covered by
p2 − 2 bicliques. Moreover, let B (V1, V2) be the biclique subgraph induced by the sets of vertices V1 and V2,
respectively. In fact B (V1, V2) ≃ Kp2−1,p2−1 and B (V1, V2) cover all edges between the independent sets
V1 and V2.

Now, consider the graph G2. Since a and −a are the inverses for themselves, it is clearly that, the vertices
(a, a) and (a,−a) are not adjacent to any vertex in V2. Thus G2 is a disconnected graph decomposed as the
union of p2−3

2 paths of order 2, namely [(a, y), (a, y−1)] and y /∈ {0, a,−a}. Thus,G2 can be covered by p2−3
2

bicliques. Therefore, CL (GF (pn)) has a biclique partition of cardinality 3p2−5
2 and hence, CL

(
GF (p2)

)
is

eigensharp.

Theorem 4.4. The clean graph CL (Zp ⊕ Zp) is eigensharp.
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Proof. Let G = CL (Zp ⊕ Zp) . Then G has 4 (p− 1)
2 vertices such that each vertex is defined by an idem-

potent element from the set I = {(0, 0), (0, 1), (1, 0), (1, 1)} and a unit from the set U = {(a, b) : a, b ∈
Zp⧹{0}}. See Remark 3.8.

From Lemma 3.9, we determined the adjacency matrix of the graph G. Hence, by20 we conclude that bp(G) ≥
max {r−(A(G)), r+ (A(G))} = 5

(
(p−1)2−2

2

)
.

We introduce a bicluique partition for G with cardinality equals to 5
(

(p−1)2−2
2

)
. The vertex set V (G) can be

partitioned as a union of the sets:

Vz = {((a, b), (c, d)) : (a, b) ∈ I, c, d ∈ Zp⧹{0}}, 1 ≤ z ≤ 4,

where (0, 0) is the initial component of each vertex in V1, (1, 0) is the initial component of each vertex in V2
and so on. Now, let Gi be the induced subgraph corresponding to the vertex sets Vz.

For (i, j) ̸= (0, 0), we can assume a partition for Vz : 2 ≤ z ≤ 4 as follows:

B̃ij = {((i, j), (x, y)) : x, y ∈ {1, p− 1}},

Bij = {((i, j), (s, t)) : s, t /∈ {1, p− 1}, ((i, j), (s−1, t−1)) /∈ Bij},

B−1
ij = {((i, j), (s−1, t−1)) : ((i, j), (s, t)) ∈ Bij},

where B̃ij has order 4, and Bij , B
−1
ij have order (p−1)2−4

2 . Actually, the subgraph G1 is isomorphic to the
complete graph K(p−1)2 , as every two different vertices in V (G1) are adjacent. Thus G1 is covered by at least
(p− 1)

2−1 disjoint bicliques; namely Π = {Dt, 1 ≤ t ≤ (p− 1)
2−1}. Since, every vertex in V1 is adjacent

to every vertex in V2, V3 and V4, we get the biclique subgraph B (V1,W ), where W = V2∪V3∪V3 is induced
by the sets of vertex V1 and W . In fact B (V1,W ) ≃ K(p−1)2,3(p−1)2 . Another complete bipartite graph can
be funded as follows: define B̃1 = {((0, 1), (x, y)) : x, y /∈ {1, p − 1}} and B̃2 = {((1, 0), (x, y)) : x, y /∈
{1, p − 1}} as subsets of G2 and G3 respectively. Because every vertex in B̃1 is adjacent to every vertex in
B̃2, the subgraph B(B̃1, B̃2) is a biclique graph isomorphic to the graph K(p−1)2−4,(p−1)2−4. Furthermore, if
we take £ = {Sij(u) : (i, j) ̸= (0, 0), u ∈ Bij} to be the set of all induced stars associated with a vertex u,

through every vertex in Bij and among all the vertex sets V (Gi), then £ is a family of 3
(

(p−1)2−4
2

)
distinct

stars. Now, assume that u, v ∈W such that u, v /∈ B̃ij . Since u and v are adjacent, then u = ((i0, j0), (x, y)) ∈
Bi0j0 and v = ((i1, j1), (x

−1, y−1)) ∈ Bi1j1with (i0, j0) ̸= (0, 0) ̸= (i1, j1). Thus uv ∈ Si0j0(u). Therefore,

Γ =
{
Π,K(G1,W ), B(B̃1, B̃2),£

}
is a bicluiqe partition of G with cardinality 5

(
(p−1)2−2

2

)
and hence, G

is eigensharp.

AMS 2010 Subject Classification: 13M99, 05C25, 05C50, 05C70.
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