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Abstract  

Fuzzy fractional partial differential equations have become a powerful approach to handle uncertainty or 

imprecision in real-world modeling problems. In this article, two compact finite difference schemes, the 

compact Crank-Nicolson and the compact center time center space methods, were developed and used to 

obtain a numerical solution for fuzzy time fractional wave equations in the double parametric form. The 

principles of fuzzy set theory are utilized to perform a fuzzy analysis and formulate the proposed numerical 

schemes. The Caputo formula is used to define the time-fractional derivative considered. The stability of the 

proposed schemes is analyzed by means of the Von Neumann method. To illustrate the practicality of the 

numerical methods, a specific numerical instance was performed. The outcomes were showcased through 

tables and figures, revealing the efficacy of the schemes in terms of accuracy and their ability to decrease 

computational expenses. 

Keywords:   Compact finite difference methods; Fuzzy Caputo formula; Double parametric form; Fuzzy 

time fractional wave equation  

1. Introduction 

Partial differential equations of fractional order are often used in fields like physics, engineering, finance, 

and medical sciences. They provide more accurate and detailed models than traditional integer-order 

differential equations [1-4]. Recently, many research studies have been focused on the fractional wave 

equation, which is relevant in acoustics, electromagnetism, and seismic analysis. This equation also describes 

the movement of objects like strings, wires, and fluid surfaces [5-7]. Any wave or motion can be represented 

as a combination of sine waves [8-9]. Solving the fractional wave equation analytically is often difficult, so 

researchers used numerical or approximation methods. Jafari and Daftardar-Gejji (2006) [10] utilized the 

Adomian decomposition method to obtain approximate solutions for both nonlinear and linear fractional 

wave equations. Jafari and Momani (2007) [11] used the Homotopy perturbation method to solve these 

equations. Odibat and Momani (2006) [12] also used the Adomian decomposition technique for the time 

fractional wave equation (TFWE) with boundary conditions. They described the fractional derivative using 

the Caputo sense and found that the Adomian decomposition method to be an effective approach for solving 

the TFWE. 

One commonly used numerical approach is finite difference schemes, which many researchers have 

discussed [13-17]. This method is important for solving fractional wave equations because it allows us to 
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break the equation down and solve it numerically, accurately handling the system's non-local and memory 

effects. Ghode et al. (2021) [16] developed an explicit finite difference method to solve the TFWE. Liu et al. 

(2022) [17] introduced a method for solving the initial boundary value problems of variable-order TFWE by 

combining central differences in space with H2N2 estimation in time. The H2N2 is a technique for 

approximating solutions to differential equations over time where it involves discretizing the time domain to 

create a sequence of approximate solutions They used an energy analysis method to discuss the convergence 

of the proposed method and numerical examples have been presented to show its effectiveness. The Compact 

finite difference methods offer several advantages over high-order finite difference methods. High-order 

methods require more grid dots, which increases computational efforts. Compact FDM solve this problem 

by using derivatives of function values at the nodes of the independent variable. This approach provides 

accurate and highly efficient solutions compared to classical FDM. In numerical methods of modeling 

processes with fractional wave equations, the variables and parameters are considered exact. However, due 

to experimental and measurement errors, these parameters can be unclear and uncertain. This has led to the 

use of fuzzy fractional wave equations. In the past few years, there has been a rise in focus on studying fuzzy 

fractional wave equations, with various contributions documented in prior research studies [18-21]. 

By reviewing the literature and to the best of our knowledge, it was found that there are no research studies 

that solve the fuzzy time fractional wave equation (FTFWE) using the compact finite difference methods. 

The aim of this paper is to find a numerical solution for the FTFWE. In the solution process, two different 

compact finite methods are developed and applied for solving the FTFWE under the double parametric form.  

2. Preliminaries  

We introduce in this section the relevant theorems and definitions that will be utilized throughout the paper. 

Definition 1: r-level set [10]  

The fuzzy r-level set 𝑈𝑟 , is the crisp set of all 𝑥 ∈  𝑋 such that 𝜇𝐴 ≥ 𝑟  i.e. 𝑈𝑟 = {𝑥 ∈ 𝑋|𝜇𝑢 > 𝑟, 𝑟 ∈ [0,1]}. 

    Definition 2: Fuzzy numbers [10]  

     Fuzzy numbers are a specific subset of real numbers that represent uncertain values and are associated with 

degrees of membership within a set. A fuzzy number µ is termed a triangular fuzzy number if it is defined 

by three parameters 𝑎 < 𝑏 <  𝑐, where the graph of µ (𝑥) forms a triangle with the base spanning the interval 

[𝑎, 𝑐 ] and the vertex at 𝑥 = 𝑏. The membership function of such a triangular fuzzy number is given by: 

𝜇𝑢𝑟 =

{
 
 

 
 

0 ,                        𝑖𝑓 𝑥 < 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
,                       𝑖𝑓 𝑎 ≤ 𝑥 ≤ 𝑏

𝑐 − 𝑥

𝑐 − 𝑏
,                       𝑖𝑓 𝑏 ≤ 𝑥 ≤ 𝑐

0 ,                      𝑖𝑓 𝑥 > 𝑐

 

where the 𝑟-level sets of triangular fuzzy numbers are  

[𝜇]𝑟 = [𝑎 +  𝑟 (𝑏 − 𝑎), 𝑐 −  𝑟 (𝑐 − 𝑏)], 𝑟 ∈  [0, 1] 

Definition 3: Double parametric form of fuzzy numbers [10] 

Using the single parametric form, we have 𝑈 = [𝑢(𝑟), 𝑢(𝑟)]. Now this may can written as crisp number using 

double parametric form  

𝑈(𝑟, 𝛽) = 𝛽[𝑢(𝑟) − 𝑢(𝑟)] + 𝑢(𝑟)  where 𝑟 𝑎𝑛𝑑 𝛽 ∈ [0,1]. 

3. Wave Equation with Time Fractional Derivative in Fuzzy Form 

In this section, the overall structure of the FTFWE is presented based on Hukuhara derivative using a fuzzy 

technique called the double parametric form. 

Take into account the representation of FTFWE, and by incorporating the given boundary and initial 

conditions. [19]  

𝜕𝛼𝑢̃(𝑥, 𝑡, 𝛼)

𝜕𝛼𝑡
= k̃(𝑥, 𝑡)

𝜕2𝑢̃(𝑥, 𝑡)

𝜕𝑥2
+ 𝑏̃(𝑥, 𝑡)     , 1 < 𝛼 ≤ 2, (𝑥, 𝑡)ϵ Ω = [0, L] ×  [0, T] 
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  𝑢̃(𝑥, 0) = ∅1̃(𝑥),
𝜕𝑢

𝜕𝑡
(𝑥, 0) = ∅2̃(𝑥), 𝑢̃(0, 𝑡) = 𝑣̃, 𝑢̃(𝑙, 𝑡) = 𝑦̃,                                 (1) 

In accordance with the singular parametric form of Hukuhara derivatives, we can express Eq. (1) in the 

following manner: 

[
𝜕𝛼𝑢(𝑥, 𝑡, 𝛼; 𝑟)

𝜕𝛼𝑡
 ,
𝜕𝛼𝑢(𝑥, 𝑡, 𝛼; 𝑟)

𝜕𝛼𝑡
]

= [ k(𝑥, 𝑡; 𝑟), k̅(𝑥, 𝑡; 𝑟)]  [
𝜕2𝑢(𝑥, 𝑡; 𝑟)

𝜕𝑥2
 ,
𝜕2𝑢(𝑥, 𝑡; 𝑟)

𝜕𝑥2
] + [ 𝑏(𝑥, 𝑡; 𝑟), 𝑏̅(𝑥, 𝑡; 𝑟)]  

  (2) 

Experiencing the effects of uncertain boundaries and initial conditions: 

[𝑢(𝑥, 0; 𝑟), 𝑢(𝑥, 0; 𝑟)]  = [∅1(𝑥, 0; 𝑟), ∅1̅̅ ̅(𝑥, 0; 𝑟)] 

[
𝜕𝑢

𝜕𝑡
(𝑥, 0; 𝑟),

𝜕𝑢

𝜕𝑡
(𝑥, 0; 𝑟)] = [∅2(𝑥, 0; 𝑟), ∅2̅̅ ̅(𝑥, 0; 𝑟)] 

[𝑢(0, 𝑡; 𝑟), 𝑢(0, 𝑡; 𝑟)] = [𝑣(0, 𝑡; 𝑟), 𝑣(0, 𝑡; 𝑟)]  

 [𝑢(𝑙, 𝑡; 𝑟), 𝑢(𝑙, 𝑡; 𝑟)] = [𝑦(𝑙, 𝑡; 𝑟), 𝑦(𝑙, 𝑡; 𝑟)]   

Now, by using the double parametric form in [19], the Eq.(2) is rewritten as the following: 

[𝛽 (
𝜕𝛼𝑢(𝑥, 𝑡, 𝛼; 𝑟)

𝜕𝛼𝑡
 −
𝜕𝛼𝑢(𝑥, 𝑡, 𝛼; 𝑟)

𝜕𝛼𝑡
 ) +

𝜕𝛼𝑢(𝑥, 𝑡, 𝛼; 𝑟)

𝜕𝛼𝑡
]

=  [ 𝛽 [k̅(𝑥, 𝑡, 𝑟) − k(𝑥, 𝑡, 𝑟)] + k(𝑥, 𝑡, 𝑟)]  [𝛽 (
𝜕2𝑢(𝑥, 𝑡; 𝑟)

𝜕𝑥2
− 
𝜕2𝑢(𝑥, 𝑡; 𝑟)

𝜕𝑥2
)

+
𝜕2𝑢(𝑥, 𝑡; 𝑟)

𝜕𝑥2
]  + [𝛽 (𝑏̅(𝑥, 𝑡; 𝑟) − 𝑏(𝑥, 𝑡; 𝑟)) + 𝑏(𝑥, 𝑡; 𝑟)]   

                   (3)                              

Subjected to fuzzy initial and boundary conditions 

( 𝛽 (𝑢̅(𝑥, 0; 𝑟) − 𝑢(𝑥, 0; 𝑟)) + 𝑢(𝑥, 0; 𝑟))  = (𝛽 (∅1(𝑥; 𝑟) − ∅1(𝑥; 𝑟)) + ∅1(𝑥; 𝑟))  

(  𝛽 (
𝜕𝑢

𝜕𝑡
(𝑥, 0; 𝑟) −

𝜕𝑢

𝜕𝑡
(𝑥, 0; 𝑟)) +

𝜕𝑢

𝜕𝑡
(𝑥, 0; 𝑟)) = (𝛽 (∅2(𝑥; 𝑟) − ∅2(𝑥; 𝑟)) + ∅2(𝑥; 𝑟)) 

 (𝛽 (𝑢̅(0, 𝑡; 𝑟) − 𝑢(0, 𝑡; 𝑟)) + 𝑢(0, 𝑡; 𝑟))  = (𝛽 (𝑣̅(𝑥; 𝑟) − 𝑣(𝑥; 𝑟)) + 𝑣(𝑥; 𝑟))  

 (𝛽 (𝑢̅(𝑙, 𝑡; 𝑟) − 𝑢(𝑙, 𝑡; 𝑟)) + 𝑢(𝑙, 𝑡; 𝑟)) = (𝛽 (𝑦̅(𝑥; 𝑟) − 𝑦(𝑥; 𝑟)) + 𝑦(𝑥; 𝑟)) 

where  𝛽 ∈ [0,1].  

Now the fuzzy functions are converted to a system of equations as follows:  

𝜕𝛼𝑢̃(𝑥, 𝑡; 𝑟, 𝛽)

𝜕𝛼𝑡
= 𝛽 (

𝜕𝛼𝑢(𝑥, 𝑡, 𝛼; 𝑟)

𝜕𝛼𝑡
 −
𝜕𝛼𝑢(𝑥, 𝑡, 𝛼; 𝑟)

𝜕𝛼𝑡
 ) +

𝜕𝛼𝑢(𝑥, 𝑡, 𝛼; 𝑟)

𝜕𝛼𝑡
 

𝜕2𝑢(𝑥,𝑡,𝑟,𝛽)

𝜕𝑥2
= (𝛽 (

𝜕2𝑢(𝑥,𝑡;𝑟)

𝜕𝑥2
− 

𝜕2𝑢(𝑥,𝑡;𝑟)

𝜕𝑥2
) +

𝜕2𝑢(𝑥,𝑡;𝑟)

𝜕𝑥2
)   

k̃(𝑥, 𝑡; 𝑟, 𝛽) =  (k̅(𝑥, 𝑡, 𝑟) − k(𝑥, 𝑡, 𝑟)) + k(𝑥, 𝑡, 𝑟) 
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𝑏̃(𝑥, 𝑡; 𝑟, 𝛽) = (𝛽 (𝑏̅(𝑥, 𝑡; 𝑟) − 𝑏(𝑥, 𝑡; 𝑟)) + 𝑏(𝑥, 𝑡; 𝑟)) 

𝑢̃(𝑥, 0, 𝑟, 𝛽) = (𝛽 (𝑢̅(𝑥, 0; 𝑟) − 𝑢(𝑥, 0; 𝑟)) + 𝑢(𝑥, 0; 𝑟)) 

𝜕𝑢̃

𝜕𝑡
(𝑥, 0; 𝑟, 𝛽) = (𝛽 (

𝜕𝑢̅

𝜕𝑡
(𝑥, 0; 𝑟) −

𝜕𝑢

𝜕𝑡
(𝑥, 0; 𝑟)) +

𝜕𝑢

𝜕𝑡
(𝑥, 0; 𝑟)) 

∅1̃(𝑥, 𝑟, 𝛽) = (𝛽 (∅1̅̅ ̅(𝑥; 𝑟) − ∅1(𝑥; 𝑟)) + ∅1(𝑥; 𝑟))   

∅2̃(𝑥, 𝑟, 𝛽) = (𝛽 (∅2̅̅ ̅(𝑥; 𝑟) − ∅2(𝑥; 𝑟)) + ∅2(𝑥; 𝑟))  

𝑢̃(0, 𝑡, 𝑟, 𝛽) = (𝛽 (𝑢(0, 𝑡; 𝑟) − 𝑢̅(0, 𝑡; 𝑟)) + 𝑢(0, 𝑡; 𝑟)) 

𝑣̃(𝑥, 𝑟, 𝛽) = (𝛽 (𝑣̅(𝑥; 𝑟) − 𝑣(𝑥; 𝑟)) + 𝑣(𝑥; 𝑟))  

𝑢̃(𝑙, 𝑡, 𝑟, 𝛽) = (𝛽 (𝑢(𝑙, 𝑡; 𝑟) − 𝑢̅(𝑙, 𝑡; 𝑟)) + 𝑢(𝑙, 𝑡; 𝑟)) 

𝑦̃(𝑥, 𝑟, 𝛽) = (𝛽 (𝑦̅(𝑥; 𝑟) − 𝑦(𝑥; 𝑟)) + 𝑦(𝑥; 𝑟))  

By plugging these values into Eq. (3), we obtian: 

𝜕𝛼𝑢̃(𝑥, 𝑡, 𝛼; 𝑟, 𝛽)

𝜕𝛼𝑡
= k̃(𝑥, 𝑡; 𝑟, 𝛽)

𝜕2𝑢̃(𝑥, 𝑡; 𝑟, 𝛽)

𝜕𝑥2
+ 𝑏̃(𝑥, 𝑡; 𝑟, 𝛽)     , 0 ≤ 𝑟 ≤ 1,0 ≤ 𝛽 ≤ 1 

𝑢̃(𝑥, 0; 𝑟, 𝛽) = ∅1̃(𝑥, 𝑟, 𝛽) ,
𝜕𝑢

𝜕𝑡
(𝑥, 0; 𝑟, 𝛽) = ∅2̃(𝑥, 𝑟, 𝛽), 𝑢̃(0, 𝑡, 𝛽) = 𝑣̃(𝑥, 𝑟, 𝛽) ,  𝑢̃(𝑙, 𝑡, 𝛽) = 𝑦̃(𝑥, 𝑟, 𝛽)        

(4) 

The single parametric form allows us to determine the upper and lower bounds of the solutions by assuming 

𝛽 = 1 and 𝛽 = 0, respectively. This can be expressed as follows 

 𝑢̃(𝑥, 𝑡; 𝑟, 1) =  𝑢(𝑥, 𝑡; 𝑟) 𝑎𝑛𝑑 𝑢̃(𝑥, 𝑡; 𝑟, 0) =  𝑢(𝑥, 𝑡; 𝑟)  . 

4. Taylor Series and Derivatives Approximation 

We can assume 𝑢𝑖+1
𝑛 and 𝑢𝑖+1

𝑛  about (𝑥𝑖 , 𝑡𝑛) by Taylor series to derive the FCFD approximations for the 

spatial derivatives. 

𝑢𝑖+1
𝑛 = 𝑢𝑖

𝑛 + ℎ (
𝜕𝑢

𝜕𝑥
)
𝑖

𝑛

+
ℎ2

2
(
𝜕2𝑢

𝜕𝑥2
)
𝑖

𝑛

+
ℎ3

6
(
𝜕3𝑢

𝜕𝑥3
)
𝑖

𝑛

+⋯

𝑢𝑖−1
𝑛 = 𝑢𝑖

𝑛 − ℎ (
𝜕𝑢

𝜕𝑥
)
𝑖

𝑛

+
ℎ2

2
(
𝜕2𝑢

𝜕𝑥2
)
𝑖

𝑛

−
ℎ3

6
(
𝜕3𝑢

𝜕𝑥3
)
𝑖

𝑛

+⋯
}                                                    (5) 

The first derivatives of  𝑢𝑖+1
𝑛  and 𝑢𝑖−1

𝑛  is 

(
𝜕𝑢

𝜕𝑥
)
𝑖+1

𝑛

= (
𝜕𝑢

𝜕𝑥
)
𝑖

𝑛

+ ℎ (
𝜕2𝑢

𝜕𝑥2
)
𝑖

𝑛

+
ℎ2

2
(
𝜕3𝑢

𝜕𝑥3
)
𝑖

𝑛

+
ℎ3

6
(
𝜕4𝑢

𝜕𝑥4
)
𝑖

𝑛

+⋯

(
𝜕𝑢

𝜕𝑥
)
𝑖−1

𝑛

= (
𝜕𝑢

𝜕𝑥
)
𝑖

𝑛

− ℎ (
𝜕2𝑢

𝜕𝑥2
)
𝑖

𝑛

+
ℎ2

2
(
𝜕3𝑢

𝜕𝑥3
)
𝑖

𝑛

−
ℎ3

6
(
𝜕4𝑢

𝜕𝑥4
)
𝑖

𝑛

+⋯
}                                           (6) 

The second derivatives of  𝑢𝑖+1
𝑛  and 𝑢𝑖−1

𝑛  is 

(
𝜕2𝑢

𝜕𝑥2
)
𝑖+1

𝑛

= (
𝜕2𝑢

𝜕𝑥2
)
𝑖

𝑛

+ ℎ (
𝜕3𝑢

𝜕𝑥3
)
𝑖

𝑛

+
ℎ2

2
(
𝜕4𝑢

𝜕𝑥4
)
𝑖

𝑛

+
ℎ3

6
(
𝜕5𝑢

𝜕𝑥5
)
𝑖

𝑛

+⋯

(
𝜕2𝑢

𝜕𝑥2
)
𝑖−1

𝑛

= (
𝜕2𝑢

𝜕𝑥2
)
𝑖

𝑛

− ℎ (
𝜕3𝑢

𝜕𝑥3
)
𝑖

𝑛

+
ℎ2

2
(
𝜕4𝑢

𝜕𝑥4
)
𝑖

𝑛

−
ℎ3

6
(
𝜕5𝑢

𝜕𝑥5
)
𝑖

𝑛

+⋯
}                                         (7) 
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By using Eq.(5-7) the first and second spatial derivatives are approximated respectively to obtain: 

(
𝜕𝑢

𝜕𝑥
)
𝑖

𝑛

=
𝛿𝑥 2ℎ⁄

(1+
1

6
 𝛿2𝑥)

𝑢𝑖
𝑛 +

ℎ4

180
(
𝜕5𝑢

𝜕𝑥5
)
𝑖

𝑛

+ 𝑂(ℎ5)                                               (8) 

(
𝜕2𝑢

𝜕𝑥2
)
𝑖

𝑛

=
𝛿2𝑥 ℎ2⁄

(1+
1

12
 𝛿2𝑥)

𝑢𝑖
𝑛 +

ℎ4

240
(
𝜕6𝑢

𝜕𝑥6
)
𝑖

𝑛

+ 𝑂(ℎ6)                                             (9) 

where  𝛿𝑥 = 𝑢𝑖+1
𝑛 − 𝑢𝑖−1

𝑛  and 𝛿2𝑥 = 𝑢𝑖+1
𝑛 − 2𝑢𝑖

𝑛 + 𝑢𝑖−1
𝑛  for  𝑢𝑖

𝑛| 0 ≤ 𝑖 ≤ 𝑀, 0 ≤ 𝑛 ≤ 𝑁 

(1 +
1

6
 𝛿2𝑥)𝑢𝑖

𝑛 =
1

6
(𝑢𝑖+1

𝑛 + 4𝑢𝑖
𝑛 + 𝑢𝑖−1

𝑛 ), 1 ≤  𝑖 ≤ 𝑀 − 1                             (10) 

(1 +
1

12
 𝛿2𝑥)𝑢𝑖

𝑛 =
1

12
(𝑢𝑖+1

𝑛 + 10𝑢𝑖
𝑛 + 𝑢𝑖−1

𝑛 ), 1 ≤  𝑖 ≤ 𝑀 − 1                        (11) 

5. CCTCS Scheme for the Solution of FTFWE 

we employ in this section the double parametric form of a fuzzy number to implement the compact centre 

time centre space (CCTCS) scheme for solving the FTFWE. The Caputo formula is utilized for the time 

fractional derivative, and a fourth-order accurate compact approximation is applied for the second-order 

spatial derivative at time level 'n'. 

To numerically solve the FTFWE using the CCTCS scheme, we discretize the time fractional derivative given 

in Eq. (4) through the application of the Caputo formula as presented in [22]. Similarly, the partial derivatives 

in the governing equation are discretized based on Eq. (9) to yield the desired outcome. 

𝑘−𝛼

Γ(3 − 𝛼)
[𝑢𝑖
𝑛+1 − 2𝑢𝑖

𝑛 + 𝑢𝑖
𝑛−1 +∑𝑏𝑗  (𝑢𝑖

𝑛−𝑗+1
− 2𝑢𝑖

𝑛−𝑗
+ 𝑢𝑖

𝑛−𝑗−1
)]

𝑛−1

𝑗=1

= 𝑎̃(𝑥)
𝛿2𝑥/ℎ

2

(1 +
1
12
 𝛿2𝑥)

𝑢̃𝑖
𝑛 + 𝑏̃(𝑥) 

             (12) 

(1 +
1

12
 𝛿2𝑥)(

𝑘−𝛼

Γ(3 − 𝛼)
[𝑢𝑖
𝑛+1 − 2𝑢𝑖

𝑛 + 𝑢𝑖
𝑛−1 +∑𝑏𝑗  (𝑢𝑖

𝑛−𝑗+1
− 2𝑢𝑖

𝑛−𝑗
+ 𝑢𝑖

𝑛−𝑗−1
)]

𝑛−1

𝑗=1

)  

=
𝐷̃(𝑥)𝛿2𝑥
ℎ2

𝑢̃𝑖
𝑛 + (1 +

1

12
 𝛿2𝑥)(𝑏̃(𝑥)) 

   (13) 

From Eq. (12) and Eq. (13) we obtain:  

∆𝑡−𝛼

Γ(3 − 𝛼)
×
1

12
([(𝑢̃𝑖+1

𝑛+1 + 10𝑢̃𝑖
𝑛+1 + 𝑢̃𝑖−1

𝑛+1) − 2(𝑢̃𝑖+1
𝑛 + 10𝑢̃𝑖

𝑛 + 𝑢̃𝑖−1
𝑛 ) + (𝑢̃𝑖+1

𝑛−1 + 10𝑢̃𝑖
𝑛−1 + 𝑢̃𝑖−1

𝑛−1)

+∑𝑏𝑗  [(𝑢̃𝑖+1
𝑛−𝑗+1

+  10𝑢̃𝑖
𝑛−𝑗+1

+ 𝑢̃𝑖−1
𝑛−𝑗+1

) − 2(𝑢̃𝑖+1
𝑛−𝑗

+ 10𝑢̃𝑖
𝑛−𝑗

+ 𝑢̃𝑖−1
𝑛−𝑗

)

𝑛−1

𝑗=1

+ (𝑢̃𝑖+1
𝑛−𝑗−1

+ 10𝑢̃𝑖
𝑛−𝑗−1

+ 𝑢̃𝑖−1
𝑛−𝑗−1

)])

= 𝐷̃(𝑥) [
𝑢̃𝑖+1
𝑛 − 2𝑢̃𝑖

𝑛 + 𝑢̃𝑖−1
𝑛

ℎ2
] +

1

12
(𝑏̃𝑖+1

𝑛 + 10𝑏̃𝑖
𝑛 + 𝑏̃𝑖−1

𝑛 ) 

                                                    (14) 

[(𝑢̃𝑖+1
𝑛+1 + 10𝑢̃𝑖

𝑛+1 + 𝑢̃𝑖−1
𝑛+1) − 2(𝑢̃𝑖+1

𝑛 + 10𝑢̃𝑖
𝑛 + 𝑢̃𝑖−1

𝑛 ) + (𝑢̃𝑖+1
𝑛−1 + 10𝑢̃𝑖

𝑛−1 + 𝑢̃𝑖−1
𝑛−1)

+∑𝑏𝑗  [(𝑢̃𝑖+1
𝑛−𝑗+1

+  10𝑢̃𝑖
𝑛−𝑗+1

+ 𝑢̃𝑖−1
𝑛−𝑗+1

) − 2(𝑢̃𝑖+1
𝑛−𝑗

+ 10𝑢̃𝑖
𝑛−𝑗

+ 𝑢̃𝑖−1
𝑛−𝑗

)

𝑛−1

𝑗=1

+ (𝑢̃𝑖+1
𝑛−𝑗−1

+ 10𝑢̃𝑖
𝑛−𝑗−1

+ 𝑢̃𝑖−1
𝑛−𝑗−1

)]

=
12 𝐷̃(𝑥) 𝑘𝛼 Γ(3 − 𝛼)

ℎ2
(𝑢𝑖+1

𝑛 − 2𝑢𝑖
𝑛 + 𝑢𝑖−1

𝑛 ) + 𝑘𝛼 Γ(3 − 𝛼)(𝑏̃𝑖+1
𝑛 + 10𝑏̃𝑖

𝑛 + 𝑏̃𝑖−1
𝑛 ) 
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    (15) 

Now we let  𝑝(𝑟) =
12 𝐷̃(𝑥,𝑟)𝐾𝛼Γ(3−𝛼)

ℎ2
 , and from Eq. (15) we obtain: 

[(𝑢̃𝑖+1
𝑛+1 + 10𝑢̃𝑖

𝑛+1 + 𝑢̃𝑖−1
𝑛+1) − 2(𝑢̃𝑖+1

𝑛 + 10𝑢̃𝑖
𝑛 + 𝑢̃𝑖−1

𝑛 ) + (𝑢̃𝑖+1
𝑛−1 + 10𝑢̃𝑖

𝑛−1 + 𝑢̃𝑖−1
𝑛−1)

+∑𝑏𝑗  [(𝑢̃𝑖+1
𝑛−𝑗+1

+  10𝑢̃𝑖
𝑛−𝑗+1

+ 𝑢̃𝑖−1
𝑛−𝑗+1

) − 2(𝑢̃𝑖+1
𝑛−𝑗

+ 10𝑢̃𝑖
𝑛−𝑗

+ 𝑢̃𝑖−1
𝑛−𝑗

)

𝑛−1

𝑗=1

+ (𝑢̃𝑖+1
𝑛−𝑗−1

+ 10𝑢̃𝑖
𝑛−𝑗−1

+ 𝑢̃𝑖−1
𝑛−𝑗−1

)]

= ( 𝑝 𝑢𝑖+1
𝑛 − 2 𝑝 𝑢𝑖

𝑛 +  𝑝 𝑢𝑖−1
𝑛 ) + 𝑘𝛼 Γ(3 − 𝛼)(𝑏̃𝑖+1

𝑛 + 10𝑏̃𝑖
𝑛 + 𝑏̃𝑖−1

𝑛 ) 
           (16) 

By simplifying Eq. (16), we get the general formula of CCTCS for FTFWE 

[(𝑢̃𝑖+1
𝑛+1 + 10𝑢̃𝑖

𝑛+1 + 𝑢̃𝑖−1
𝑛+1) + (𝑢̃𝑖+1

𝑛−1 + 10𝑢̃𝑖
𝑛−1 + 𝑢̃𝑖−1

𝑛−1)

+∑𝑏𝑗  [(𝑢̃𝑖+1
𝑛−𝑗+1

+  10𝑢̃𝑖
𝑛−𝑗+1

+ 𝑢̃𝑖−1
𝑛−𝑗+1

) − 2(𝑢̃𝑖+1
𝑛−𝑗

+ 10𝑢̃𝑖
𝑛−𝑗

+ 𝑢̃𝑖−1
𝑛−𝑗

)

𝑛−1

𝑗=1

+ (𝑢̃𝑖+1
𝑛−𝑗−1

+ 10𝑢̃𝑖
𝑛−𝑗−1

+ 𝑢̃𝑖−1
𝑛−𝑗−1

)]

= (𝑠 + 2)𝑢̃𝑖+1
𝑛 + (20 − 2𝑠) 𝑢̃𝑖

𝑛 + (𝑠 + 2)𝑢̃𝑖−1
𝑛 + 𝑘𝛼 Γ(3 − 𝛼)(𝑏̃𝑖+1

𝑛 + 10𝑏̃𝑖
𝑛 + 𝑏̃𝑖−1

𝑛 ) 
                         (17) 

6. Compact Crank-Nicholson for Solution of the FTFWE 

“In this section, we employ the double parametric form of fuzzy numbers in a compact Crank-Nicholson 

scheme. We utilize the Caputo formula for time fractional derivatives and a fourth-order accuracy compact 

approximation at time level 𝑛 + 1/2   for the second-order space derivative to effectively solve the FTFWE.  

To numerically solve the FTFWE using the compact Crank-Nicholson scheme, we discretize the time 

fractional derivative in Eq. (4) with the Caputo formula presented in [22].  Additionally, we discretize the 

second partial derivatives of the same equation at time level 𝑛 + 1/2, employing Eq. (9) to obtain the desired 

results.” 

∆𝑡−𝛼

Γ(3 − 𝛼)
×
1

12
([(𝑢̃𝑖+1

𝑛+1 + 10𝑢̃𝑖
𝑛+1 + 𝑢̃𝑖−1

𝑛+1) − 2(𝑢̃𝑖+1
𝑛 + 10𝑢̃𝑖

𝑛 + 𝑢̃𝑖−1
𝑛 ) + (𝑢̃𝑖+1

𝑛−1 + 10𝑢̃𝑖
𝑛−1 + 𝑢̃𝑖−1

𝑛−1)

+∑𝑏𝑗  [(𝑢̃𝑖+1
𝑛−𝑗+1

+  10𝑢̃𝑖
𝑛−𝑗+1

+ 𝑢̃𝑖−1
𝑛−𝑗+1

) − 2(𝑢̃𝑖+1
𝑛−𝑗

+ 10𝑢̃𝑖
𝑛−𝑗

+ 𝑢̃𝑖−1
𝑛−𝑗

)

𝑛−1

𝑗=1

+ (𝑢̃𝑖+1
𝑛−𝑗−1

+ 10𝑢̃𝑖
𝑛−𝑗−1

+ 𝑢̃𝑖−1
𝑛−𝑗−1

)])

=
𝐷̃(𝑥)

2
[
𝑢̃𝑖+1
𝑛+1 − 2𝑢̃𝑖

𝑛+1 + 𝑢̃𝑖−1
𝑛+1

ℎ2
+
𝑢̃𝑖+1
𝑛 − 2𝑢̃𝑖

𝑛 + 𝑢̃𝑖−1
𝑛

ℎ2
] +

1

12
(𝑏̃𝑖+1

𝑛 + 10𝑏̃𝑖
𝑛 + 𝑏̃𝑖−1

𝑛 ) 

         (18) 

[(𝑢̃𝑖+1
𝑛+1 + 10𝑢̃𝑖

𝑛+1 + 𝑢̃𝑖−1
𝑛+1) − 2(𝑢̃𝑖+1

𝑛 + 10𝑢̃𝑖
𝑛 + 𝑢̃𝑖−1

𝑛 ) + (𝑢̃𝑖+1
𝑛−1 + 10𝑢̃𝑖

𝑛−1 + 𝑢̃𝑖−1
𝑛−1)

+∑𝑏𝑗  [(𝑢̃𝑖+1
𝑛−𝑗+1

+  10𝑢̃𝑖
𝑛−𝑗+1

+ 𝑢̃𝑖−1
𝑛−𝑗+1

) − 2(𝑢̃𝑖+1
𝑛−𝑗

+ 10𝑢̃𝑖
𝑛−𝑗

+ 𝑢̃𝑖−1
𝑛−𝑗

)

𝑛−1

𝑗=1

+ (𝑢̃𝑖+1
𝑛−𝑗−1

+ 10𝑢̃𝑖
𝑛−𝑗−1

+ 𝑢̃𝑖−1
𝑛−𝑗−1

)]

=
12 𝐷̃(𝑥) ∆𝑡𝛼 Γ(3 − 𝛼)

2ℎ2
(𝑢̃𝑖+1

𝑛+1 − 2𝑢̃𝑖
𝑛+1 + 𝑢̃𝑖−1

𝑛+1 + 𝑢𝑖+1
𝑛 − 2𝑢𝑖

𝑛 + 𝑢𝑖−1
𝑛 )

+ ∆𝑡𝛼 Γ(3 − 𝛼)(𝑏̃𝑖+1
𝑛 + 10𝑏̃𝑖

𝑛 + 𝑏̃𝑖−1
𝑛 ) 

(19) 

Now we let  𝑠̃(𝑟) =
6 𝐷̃(𝑥,𝑟)𝐾𝛼Γ(3−𝛼)

ℎ2
 , and from Eq. (19) we obtain: 
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[(𝑢̃𝑖+1
𝑛+1 + 10𝑢̃𝑖

𝑛+1 + 𝑢̃𝑖−1
𝑛+1) − 2(𝑢̃𝑖+1

𝑛 + 10𝑢̃𝑖
𝑛 + 𝑢̃𝑖−1

𝑛 ) + (𝑢̃𝑖+1
𝑛−1 + 10𝑢̃𝑖

𝑛−1 + 𝑢̃𝑖−1
𝑛−1)

+∑𝑏𝑗  [(𝑢̃𝑖+1
𝑛−𝑗+1

+  10𝑢̃𝑖
𝑛−𝑗+1

+ 𝑢̃𝑖−1
𝑛−𝑗+1

) − 2(𝑢̃𝑖+1
𝑛−𝑗

+ 10𝑢̃𝑖
𝑛−𝑗

+ 𝑢̃𝑖−1
𝑛−𝑗

)

𝑛−1

𝑗=1

+ (𝑢̃𝑖+1
𝑛−𝑗−1

+ 10𝑢̃𝑖
𝑛−𝑗−1

+ 𝑢̃𝑖−1
𝑛−𝑗−1

)]

= (𝑠 𝑢̃𝑖+1
𝑛+1 − 2𝑠 𝑢̃𝑖

𝑛+1 + 𝑠 𝑢̃𝑖−1
𝑛+1 + 𝑠 𝑢𝑖+1

𝑛 − 2𝑠 𝑢𝑖
𝑛 + 𝑠 𝑢𝑖−1

𝑛 )

+ ∆𝑡𝛼 Γ(3 − 𝛼)(𝑏̃𝑖+1
𝑛 + 10𝑏̃𝑖

𝑛 + 𝑏̃𝑖−1
𝑛 ) 

           (20) 

Now if simplifying Eq. (20) we get the formula of compact Crank-Nicholson method for FTFWE 

[ (1 − 𝑠) 𝑢̃𝑖+1
𝑛+1 + (10 + 2𝑠) 𝑢̃𝑖

𝑛+1 + (1 − 𝑠) 𝑢̃𝑖−1
𝑛+1 + (𝑢̃𝑖+1

𝑛−1 + 10𝑢̃𝑖
𝑛−1 + 𝑢̃𝑖−1

𝑛−1)

+∑𝑏𝑗  [(𝑢̃𝑖+1
𝑛−𝑗+1

+  10𝑢̃𝑖
𝑛−𝑗+1

+ 𝑢̃𝑖−1
𝑛−𝑗+1

) − 2(𝑢̃𝑖+1
𝑛−𝑗

+ 10𝑢̃𝑖
𝑛−𝑗

+ 𝑢̃𝑖−1
𝑛−𝑗

)

𝑛−1

𝑗=1

+ (𝑢̃𝑖+1
𝑛−𝑗−1

+ 10𝑢̃𝑖
𝑛−𝑗−1

+ 𝑢̃𝑖−1
𝑛−𝑗−1

)]

= (𝑠 + 2) 𝑢𝑖+1
𝑛 + (20 − 2𝑠) 𝑢𝑖

𝑛 + (𝑠 + 2) 𝑢𝑖−1
𝑛 + ∆𝑡𝛼 Γ(3 − 𝛼)(𝑏̃𝑖+1

𝑛 + 10𝑏̃𝑖
𝑛 + 𝑏̃𝑖−1

𝑛 ) 
     (21) 

 

7. Numerical Example 

Consider FTFWE [23] 

𝜕𝛼𝑢̃(𝑥, 𝑡, 𝛼)

𝜕𝑡𝛼
= 
𝜕2𝑢̃(𝑥, 𝑡)

𝜕𝑥2
,          1 < 𝛼 < 2, (𝑥, 𝑡) ∈ Ω = [0, 𝐿] × [0, 𝑇] 

                                      (22) 

Based on the given boundary conditions  𝑢̃(0, 𝑡) = 𝑢̃(𝐿, 𝑡) = 0   and given initial condition  

𝑢̃(𝑥, 0) = 𝜇̃ [sin(5𝜋𝑥)  + 2 𝑆𝑖𝑛(7𝜋𝑥) ] 
                                              (23) 

The fuzzy number will remain identical when expressed in a single parametric form as follows: 

 𝜇̃(𝑟) = [𝜇(𝑟), 𝜇(𝑟)] = [𝑟 − 1 , 1 − 𝑟]  for all 𝑟 ∈ [0,1] 

 The analytical solution of Eq. (22) was given in [23]: 

{
𝑢(𝑥, 𝑡, 𝛼; 𝑟) = 𝜇[sin(5𝜋𝑥) 𝐶𝑜𝑠(5𝜋𝑡) + 2 𝑆𝑖𝑛(7𝜋𝑥)𝐶𝑜𝑠(7𝜋𝑡) ]

𝑢(𝑥, 𝑡, 𝛼; 𝑟) = 𝜇[sin(5𝜋𝑥) 𝐶𝑜𝑠(5𝜋𝑡) + 2 𝑆𝑖𝑛(7𝜋𝑥)𝐶𝑜𝑠(7𝜋𝑡) ]
 

                                              (24) 

 

Figure 1. The analytical lower solution of Equation (22) at 𝑡 = 0.005, 𝑥 = 1.8 𝑎𝑛𝑑 𝑟 = 0 
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Figure 2. The analytical upper solution of Equation (22) at 𝑡 = 0.005, 𝑥 = 1.8 𝑎𝑛𝑑 𝑟 = 0 

The definition of the error for the fuzzy solution of Eq. (22) can be stated as 

[𝐸̃]𝑟 = |𝑈(𝑡, 𝑥; 𝑟) − 𝑢̃(𝑡, 𝑥; 𝑟)| = {
[𝐸]

𝑟
= |𝑈(𝑡, 𝑥; 𝑟) − 𝑢(𝑡, 𝑥; 𝑟)|

[𝐸]
𝑟
= |𝑈(𝑡, 𝑥; 𝑟) − 𝑢(𝑡, 𝑥; 𝑟)|

                          (25) 

At ∆𝑥 = ℎ = 0.2 and  ∆𝑡𝛼 = (0.001)1.5  we have the following results: 

The fuzzy number, when expressed in double parametric form, remains unchanged and can be represented 

as follows  𝜇̃(𝑟) = [𝛽(2 − 2𝑟) + (𝑟 − 1)] 

Table 1: Numerical solution of Eq. (22) by CCTCS and Compact C-N at 𝑡 = 0.05 and 𝑥 = 1.8 for 

all 𝑟, 𝛽 ∈ [0,1] 

 

 

 

  Compact CTCS Compact C-N 

𝛽 𝑟 𝑢̃(1.8,0.05; 𝑟, 𝛽) 𝐸̃(1.8,0.05; 𝑟, 𝛽) 𝑢̃(1.8,0.05; 𝑟, 𝛽) 𝐸̃(1.8,0.05; 𝑟, 𝛽) 

 

 

 

 

𝛽 = 0 

 

Lower solution 

0 −1.8914107694 7.84682 × 10−4 −1.8915505552 9.24468 × 10−4 

0.1 −1.7022696925 7.06214 × 10−4 −1.7023954997 8.32021 × 10−4 

0.3 −1.32398753845 5.49278 × 10−4 −1.3240853886 6.47128 × 10−4 

0.5 −0.9457053847 3.92341 × 10−4 −0.94577527764 4.62234 × 10−4 

0.7 −0.5674232308 2.35405 × 10−4 −0.5674651666 2.7734 × 10−4 

0.9 −0.1891410769 7.84682 × 10−5 −0.1891550555 9.24468 × 10−5 

1 0 0 0 0 

 

 

0 1.8914107694 7.84682 × 10−4 1.8915505552 9.24468 × 10−4 

0.1 1.7022696925 7.06214 × 10−4 1.7023954997 8.32021 × 10−4 
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Table 2:  Numerical solution of Eq. (22) by CCTCS and Compact C-N at 𝑡 = 0.005 and 𝑥 = 1.8 for 

all 𝑟, 𝛽 ∈ [0,1] 

 

 

 

  

𝛽 = 1 

 

Upper solution 

0.3 1.32398753845 5.49278 × 10−4 1.3240853886 6.47128 × 10−4 

0.5 0.9457053847 3.92341 × 10−4 0.94577527764 4.62234 × 10−4 

0.7 0.5674232308 2.35405 × 10−4 0.5674651666 2.7734 × 10−4 

0.9 0.1891410769 7.84682 × 10−5 0.1891550555 9.24468 × 10−5 

1 0 0 0 0 

 

 

 

 Compact CTCS Compact C-N 

𝛽 𝑟 𝑢̃(1.8,0.05; 𝑟, 𝛽) 𝐸̃(1.8,0.05; 𝑟, 𝛽) 𝑢̃(1.8,0.05; 𝑟, 𝛽) 𝐸̃(1.8,0.05; 𝑟, 𝛽) 

 

 

 

 

𝛽 = 0.4 

 

Lower solution 

0 −0.3782821539 1.56936 × 10−4 −0.3783101110 1.84894 × 10−4 

0.1 −0.3404539385 1.41243 × 10−4 −0.3404790999 1.66404 × 10−4 

0.3 −0.2647975077 1.09856 × 10−4 −0.2648170777 1.29426 × 10−4 

0.5 −0.1891410776 7.84682 × 10−5 −0.1891550555 9.24468 × 10−5 

0.7 −0.1134846462 4.70809 × 10−5 −0.1134930330 5.54681 × 10−5 

0.9 −0.0378282154 1.56936 × 10−5 −0.0378310111 1.56936 × 10−5 

1 0 0 0 0 

 

 

 

 

  

𝛽 = 0.6 

 

Upper solution 

0 0.3782821539 1.56936 × 10−4 0.3783101110 1.84894 × 10−4 

0.1 0.3404539385 1.41243 × 10−4 0.3404790999 1.66404 × 10−4 

0.3 0.2647975077 1.09856 × 10−4 0.2648170777 1.29426 × 10−4 

0.5 0.1891410776 7.84682 × 10−5 0.1891550555 9.24468 × 10−5 

0.7 0.1134846462 4.70809 × 10−5 0.1134930330 5.54681 × 10−5 

0.9 0.0378282154 1.56936 × 10−5 0.0378310111 1.56936 × 10−5 

1 0 0 0 0 
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Figure 3. Numerical solution of Eq. (22) by compact CTCS at t = 0.05 and x = 1.8 for all r, β ∈ [0,1] 

 

 

Figure 4. Numerical solution of Eq. (22) by compact C-N at t = 0.05 and x = 1.8 for all r, β ∈ [0,1] 

Table 3: Numerical solution of Eq. (22) by CTCS and Compact CTCS at 𝑡 = 0.05 and 𝑥 = 1.8 for 

all 𝑟, 𝛽 ∈ [0,1] 

 

 

 

 CTCS Compact CTCS 

𝛽 𝑟 𝑢̃(1.8,0.05; 𝑟, 𝛽) 𝐸̃(1.8,0.05; 𝑟, 𝛽) 𝑢̃(1.8,0.05; 𝑟, 𝛽) 𝐸̃(1.8,0.05; 𝑟, 𝛽) 

 

 

 

 

𝛽 = 0 

0 −1.892094 1.46803 × 10−3 −1.8914107694 7.84682 × 10−4 

0.1 −1.702885 1.32123 × 3 −1.7022696925 7.06214 × 10−4 

0.3 −1.324466 1.02762 × 10−3 −1.32398753845 5.49278 × 10−4 

0.5 −0.946047 7.34015 × 10−4 −0.9457053847 3.92341 × 10−4 
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Table 1-2 and Fig.3, Fig.4 shows that the proposed methods have a good agreement with the exact solution 

at 𝑡 = 0.05, 𝛼 = 1.5 and for some values of 𝑟, 𝛽 ∈ [0,1]. In addition, they satisfy the properties of double 

parametric form of fuzzy number by attaining the triangular fuzzy number shape. In addition, the compact 

CTCS is slightly more accurate than compact C-N. Also, form table 3 the fuzzy compact CTCS scheme 

provided slightly more accurate result than fuzzy classical CTCS scheme. Furthermore,  As can be seen in 

Fig.3 and Fig.4, the numerical result for proposed methods are more accurate solution at points that are close 

to the inflection point (𝛽 = 0.5). It should be noted that the accuracy of the finite difference methods depends 

upon the value of  𝛼 . 

8. Conclusion 

In this paper, two CFDM methods have been developed and applied in order to obtain a numerical solution 

for FTFWE in double parametric form. The Caputo definition utilized for the time fractional derivative. Both 

the CCTCS and compact Crank-Nicholson methods produce results that match the properties of fuzzy 

numbers, specifically taking the shape of triangular fuzzy numbers. The CCTCS scheme has been found to 

produce more precise solutions compared to the compact Crank-Nicholson method, as demonstrated by a 

comparative analysis of exact and numerical solutions. In addition, the fuzzy compact CCTCS scheme 

provided slightly more accurate result than fuzzy classical CTCS scheme.  
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