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 Abstract 

AI is emerging as a potential tool for revolutionizing dermatology in the early detection and diagnosis of skin 

cancers. This Review looks into the most recent innovations in AI technology, such as machine learning, 

deep learning, and explainable AI (XAI)) Moreover, it presents how one can achieve diagnostic accuracy 

similar to or exceeding that of well-experienced dermatologists. Access to such diagnostic tools in under 

resourced areas has been enhanced, inter-observer variability has increased, and workflows in clinical 

practice have been streamlined. Nevertheless, issues regarding diversity in data, generalization of models, 

and the inscrutability of many AI systems remain, and the use of these systems in clinical practice needs to 

be improved. The paper emphasizes the need for interdisciplinary collaboration, diverse dataset collection, 

and lightweight and interpretable AI models to solve these issues. Lastly, it brings together important findings 

and identifies research gaps, showing AI's potential to change the dermatology world for all patients. 

Keywords: Artificial Intelligence; Skin Cancer Detection; Dermatology; Deep Learning; Explainable AI; 

Diagnostic Accuracy 

1. Introduction 

AI in dermatology can be described as a revolutionary breakthrough in the fight against skin cancer, as it 

changes the primary mechanism for identifying this disease. This Review concerns developments in AI 

techniques focusing on utilizing Assembly Intelligence, process automation, improved diagnostic accuracy, 

and increased accessibility to underserved locations. Based on the Review of the latest publications, the work 

underlines emergent technologies such as deep learning and explainable AI that revolutionize clinical 

practices. Furthermore, it responds to such vital issues as the diversification of data and the model's ability 

to adapt to the environment, which is critical in applying these technologies. This exploration seeks to build 

improved awareness and understanding of how AI could be fine-tuned for better skin cancer diagnosis and 

management. 

1.2 Background and Significance of Skin Cancer Detection 

Of all types of skin cancer, Melanoma is especially dangerous as the fatal kind of cancer that threatens 

millions of people worldwide. This is especially the case since detecting the disease during its early stage is 

significant in helping patients achieve competent survival and reducing the harm that perfunctory cure 

methodologies can cause. Conventional techniques like biopsies and dermoscopy are efficient yet not devoid 
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of drawbacks; they are costly, inter-observer variability is high, and such procedures are rare in the 

developing world. These limitations show the importance of seeking new ways to enhance the diagnostic 

process to arrive at accurate results early enough [1]. 

The typical difficulties mentioned above have been overcome with the recent invention of artificial 

intelligence (AI). Advanced diagnostics employing machine learning to make an analysis of skin cancer are 

accurate and available at a large scale. All these introduced technologies provided better diagnostic accuracy, 

but more importantly, they increased accessibility, particularly in the low-resource environment. Continuing 

advances in AI technologies in dermatology are indicative of a new era that promises more efficient diagnosis 

coupled with fairness [2]. 

1.2 Role of Artificial Intelligence in Modern Dermatology 

Dermatology has witnessed significant improvements in medicine diagnosis through artificial intelligence 

(AI) with recent developments. The technology that has been successfully implemented in the analysis and 

diagnosis of skin lesions is machine learning and deep learning. These technologies provide diagnostic 

performance that is near to or better than that of human dermatologists. Its implementation enhances the 

accuracy of the diagnosis and the demand for the expansion and development of more sophisticated 

dermatological services to hard-to-reach regions [3]. 

Therefore, in dermatological practice, the use of AI is limited to diagnosis, treatment planning, and patient 

management. Technology incorporating AI can collate large images, analyze them, and establish disparities 

that are undetectable by professionals. These capabilities involve their incorporation into clinical workflows 

whereby decision-making can be improved, and variability lessened than manual diagnostics. Integrating AI 

into dermatology is a milestone toward a novel direction of a better and improved healthcare system for 

everyone [4].     

1.3 The objective of the Review 

This review paper aims to identify and discuss both the current and possibly future developments in 

technologies of artificial intelligence applied to skin cancer diagnosis. This Review considers how AI can be 

applied clinically to enhance diagnostic acuity and availability by considering only state-of-the-art 

methodologies. It also explores how diagnostic applications have emerged as a new avenue in the clinical 

use of AI, employing machine learning and deep learning in clinical practice to solve crucial healthcare 

problems. 

Consequently, this work also provides the current research gaps in AS-AD skin cancer detection, such as 

data diversity, model generalization challenges, and future studies. Using the findings of recent reviews, the 

study puts forward directions that can be used to develop AI approaches as valuable tools for dermatologists 

to improve the efficiency, veracity and inclusivity of health systems globally [5]. 

1.4 Scope of the Review 

The Review focuses on the following areas: 

● Deep Learning Applications: Exploration of convolutional neural networks (CNNs) and transfer 

learning techniques for skin lesion classification. 

● Explainable AI (XAI): Discuss integrating interpretability in AI models to enhance clinical trust and 

usability. 

● Challenges and Limitations: Examination of issues like data privacy, model generalization, and lack 

of diversity in datasets. 

● Future Directions: Recommendations for advancing AI applications in dermatology, emphasizing 

interdisciplinary collaboration and enhanced data availability. 

Thus, the development of AI has been fast and has dramatically enhanced the solutions for advanced skin 

diseases, specifically skin cancer diagnosis. Therefore, the potential of the current approaches, as well as the 

shortcomings, has been highlighted in this Review, which gives direction on the improvements that may be 

needed in future research and development. More focus on barriers, including bias of data, explain ability of 
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AI and others, must be put into practice to ensure that the deployed solutions are safe and fair. With the 

adoption of artificial intelligence still central in its exponential growth, mainstreaming AI in clinical practice 

has many benefits, such as enhancing the quality of care and extending healthcare access to the remaining 

corners of the globe. Further integration with other fields will be essential to realize the full possibilities of 

AI in diagnosing skin cancer and other diseases. 

2. Literature Review 

The acquisition of skin cancer involves the application of artificial intelligence in dermatology, which leads 

to improvements in the diagnosis process. As skin cancer cases increase around the world, identifying them 

early is very helpful, and together with the increasing use of artificial intelligence, it has become a practical 

approach to enhance the accuracy of diagnosis. Deep learning models, in particular, have been effectively 

used in analyzing skin lesion images, and in many cases, the effectiveness of the models was found to be on 

par with dermatologists. However, some issues still have not been solved yet, such as the ability of diagnostic 

or predictive models to explain their results, as they usually are "black boxes" in clinical practice. As for this, 

methods for explainable AI (XAI) are being implemented, which make a decision clear to clinicians and let 

them establish trust in AI-driven diagnoses. 

The gut microbiota is an essential part of the human body; it helps with metabolism, immunity and disease 

prevention [6]. Symbiotic flora disturbance is associated with diseases such as cancer, pathogenic bacteria 

Escherichia coli, and Fusobacterial nucleate, promoting inflammation and new tumor formation. In the study 

mentioned, it has been possible to spit microbiota potential with NGS performance and machine learning to 

optimize the bacterial microbiota and biomarkers studies and explore the microbial signature of treatment 

response and metabolite pathways of cancer development. Early detection is then advanced by machine 

learning algorithms, which enhance cancer classification based on the microbiota and integrate NGS to 

advance molecular diagnostics to establish personalized medicine. This integrated model enables specific 

diagnostic and therapeutic strategies based on patient-specific microbiome data and emphasizes that 

microbial interaction, biomarkers for early cancer detection, and microbiome-based cancer prevention 

rationale should be studied in the context of other-omics approaches. 

Skin cancer, which is among the most common cancers globally, is grouped into melanoma skin cancer and 

non-melanoma skin cancer; however, Melanoma is more lethal even though the incidences are low. 

Following the research done by [7], despite the high accuracy of biopsies, the diagnostic tool still involves 

invasiveness and high access costs, particularly in the lower economic bracket. Current methodologies, such 

as dermo copy and confocal microscopy, are helpful but have limitations due to inter-user variability and 

inadequate training of dermatology residents. The study also documents the increasing use of Artificial 

intelligence (AI) related technologies for better diagnosis of Melanoma. These technologies provide better 

access and higher screening sensitivity compared to conventional techniques. Discussed applications include 

AI-assisted clinical imaging, dermo copy, differentiating between Melanoma and other skin cancers, and 

vivo skin imaging devices and their possible application in aiding the dermatologist in practice. 

Skin cancer is among the widely spread health hazards in the world, and identifying the problem in the initial 

stages is vital to the patient. In the study [8], Skins age XAI was developed to address dermatology problems 

by extending the application of explainable artificial intelligence (XAI) to categorize skin lesions. The system 

used the Inception v3 model trained on the Customized HAM10000, gradient-weighted class activation 

mapping, and local interpretable model-agnostic explanations from 50,000 images for this scenario. Skins 

age XAI's accuracy was 96%, precision was 96.42 %, recall was 96.28 %, F1 scoring was 96.14 %, and AUC 

value was 99.83 %. Far from burking its importance in the evaluation of this kind of case, these results 

demonstrate its ability to recognize seven forms of skin lesions, among them Melanoma and basal cell 

carcinoma, as well as present detailed graphics to the dermatologist in order to help them with their diagnosis: 

They reduce errors and semantic gaps regarding explanations. 

Cutaneous malignancies remain a relevant problem for global public health, considering timely detection is 

vital to raising a patient’s survival rate. For details of the most recent achievement in AI for skin cancer 

prediction, the following research was conducted [9], whereby the authors undertook a systematic review of 

780 papers on skin cancer prediction published between the years 2016 and 2022, where only 62 from Scopus 

and 20 from Web of Science fit into the research criteria. The outcomes outlined the performance and strength 
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of DL algorithms to differentiate between benign and malignant lesions and diagnose skin cancer 

encompassing melanocytic and non-melanocytic skin cancers with high sensitivity and specificity. 

Nonetheless, the following limitations in their studies have been pointed out: small numbers of subjects and 

inadequate field trials have been done, thus limiting external validity. Therefore, the study urges future 

studies to replicate the AI performance with varying skin tones and settings while applying the model to other 

types of skin cancer, including basal and squamous cell carcinoma. 

In recent years, computer-aided diagnostic (CAD) systems for skin lesions have advanced significantly, 

leveraging imaging and metadata to enhance detection accuracy. However, as outlined in [10], these methods 

could be improved in providing molecular-level insights. Near infrared (NIR) spectroscopy offers a 

complementary approach by capturing non-visible information, which can significantly improve CAD 

systems for skin cancer. To address the scarcity of publicly available datasets for machine and deep learning 

(MDL) applications in spectroscopy, researchers, in collaboration with the Programa de Assistência 

Dermatological (PAD) at UFES, developed the NIR-SC-UFES dataset. This dataset comprises portable NIR 

spectral data for six types of skin lesions, with 714 spectra recorded in the range of 900–1700 nm. It represents 

a valuable resource for advancing skin cancer diagnostics and is freely accessible at data. 

Skin cancer is one of the most prevalent forms of cancer worldwide, contributing to a significant number of 

global deaths, with Melanoma being the most aggressive and deadly type. As discussed in [11], early 

diagnosis reduces mortality rates. Traditional methods, such as visual inspection, lack accuracy and 

reliability, emphasizing the need for advanced diagnostic tools. Deep learning-based approaches have 

emerged as a promising solution to address these limitations, offering improved precision in skin cancer 

classification. These methods serve as valuable tools for dermatologists, enabling early and accurate detection 

of skin cancer and thereby supporting better clinical outcomes. 

As described by [12], there is increasing interest in utilizing ex vivo confocal laser scanning microscopy 

(EVCM) for quick histological examination of tissues that provides near real-time results. However, its 

clinical utility is compromised by the fact that the identification of modality-specific diagnostic features 

requires training. A deep learning model using the MobileNet-V1 convolutional neural network was trained 

to identify Basal Cell Carcinoma (BCC) in the EVCM images. Accumulating all 50 histologically confirmed 

BCC samples for ten-fold cross-validation, the proposed model obtained sensitivity and specificity of 0.88 

and title specificities of 0.85, respectively, in addition to the area under the ROC curve of 0.94. Additional 

testing using 19 new EVCM images confirmed its sensitivity of 0.83, specificity of 0.92 for tumor-containing 

samples, and 0.98 for tumor-free controls. To this end, these outcomes may enable this deep learning method 

to support doctors in diagnosing BCC, minimize the training period for novices, and enhance decision-

making in EVCM-based diagnostics. 

Following the works explained in [13], this paper presents a new conceptual category for the classification 

of skin neoplasms, using deep learning methodologies in conjunction with genetic optimization algorithms 

to achieve higher diagnostic precision and speed. The research applies novel CNN architectures optimized 

through PSO and BA, including Mobile Net, Exception and Inception. The system exists as a web-based 

application wherein any registered user can upload skin lesion images that are classified as Melanoma or 

non-melanoma by means of a Deep Neural Network. The models were trained and validated on two large 

datasets, ISIC and HAM10000, and other architectures joined with Exception outperform others due to the 

more profound architecture and ability to extract finer features using the extreme inception module and the 

Bat algorithm. This solution is beneficial not only for dermatologists as a diagnosis tool but also shows the 

possibility of its application in the medical field and clinical diagnosis in a particular specialty. 

LLMs are rapidly revolutionizing many industries, including urology, improving documentation creation, 

communication with patients, and education and research. Ref [14], Talyshinskii et al. described the utility 

of ChatGPT in these areas, explaining that the system would reduce clinicians' workload while offering 

educational value to students and clinicians. However, the study focused on essential features vital in health 

practice, like risks associated with information twists, fake references, plagiarism, and infringement of patient 

information and, therefore, foreseeing careful and sound execution of LLMs in healthcare practice. 

Diagnostic image segmentation by using the computer assists in aiding physicians in detecting the lesion 

areas for diagnosis and treatment. [15], as described, segmentation of medical images is still problematic 
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because targets can have irregular shapes and are usually significantly smaller than their background. For 

this purpose, the study introduced the Ultra-Lightweight Network Inspired by Bio-Visual Interaction called 

BVI-Net, which originated from the creed of biological vision processing. BVI-Net involves a separate global 

pathway similar to the dorsal stream to provide a quick holistic information extraction, and a local pathway 

modeling the ventral stream inspects the input details. Furthermore, a simple skip connection module 

incorporates GCN attention, allowing multiple levels of features to be fused. The ISIC, LiTS, and BRATS 

datasets show that the designed BVI-Net achieves high segmentation accuracy using only 0.026M parameters 

while surpassing the current state-of-the-art methods in both performance and efficiency and, thus, can be 

applied to the clinical setting. 

Soon as explained in the paper [16], computer-assisted medical image segmentation plays an important role 

in helping doctors identify lesion areas that are useful in diagnosis and treatment. However, some problems 

still exist because typical target shapes are irregular, and target regions differ in size from background 

regions. To overcome these problems, the study presents the Ultra-Lightweight Network Inspired by Bio-

Visual Interaction (BVI-Net) architecture, which is based on biological visual pathways to deliver high 

performance of the segmentation while utilizing minimum computational power. It consists of a Global 

Pathway, modeling the dorsal stream for fast extraction of global features, and the Local Pathway, based on 

the ventral stream for local fine processing. GCN-based attention is also incorporated to facilitate effective 

multilevel feature fusion. The experiments performed on the ISIC, LiTS, and BraTS datasets show that the 

proposed BVI-Net model can achieve performance comparable to state-of-the-art methods with fewer 

parameters - 0.026M, making the algorithm very suitable for practical use in clinics. 

As described in [17], inequalities in breast cancer screening adversatively affect an underprivileged 

population of individuals, such as the American Indian or Alaska Native people, Black and Hispanic people, 

people with disabilities, and the LGBTQ+ community. The factors affecting the use of mammography 

services include socioeconomic status, which affects the ability to pay for the services; geographic 

restrictions, which limit access; and variability in insured health services, which affects usage of the service. 

Problems associated with present screening protocols, which differ across organizations, complicate these 

issues for underprivileged groups. Efforts such as the Breast Density Notification Law and the Find It Early 

Act standardize legislation to reduce disparities, but they fail. The superior risk classifications generated from 

conventional risk models are disparate and a source of unfairness in genetic testing and supplemental 

screening recommendations. New technologies: Artificial intelligence seems to have an excellent opportunity 

to play a critical role in lessening these gaps regarding risk assessment and improved detection rates, but their 

adoption requires scrutiny to ensure it does not deepen the inequalities already present. The focus is on the 

accessibility of public environments for disabled and other marginalized people, and recommendations for 

further research, the development of policies and practices, and clinical application are provided. 

As stated in [18], metabolic dysfunction-associated steatotic liver disease (MASLD) is a newly emerging 

public health concern due to its strong relation to MetS caused by obesity-altered metabolism. MASLD is a 

chronic liver disease where there is an excessive concentration of fat in the liver's original tissue, and it tends 

to worsen to other worse stages, leading to higher morbidity and mortality. It is a predisposing factor related 

to obesity, insulin resistance, dyslipidemia, diet, and gut microbiota dysbiosis. It has bidirectional relations 

with MetS components like hyperglycemia, hypertension and dyslipidemia. Further, MASLD is associated 

with the progression of other serious hepatic diseases and conditions outside the liver, such as cardiovascular 

diseases and some cancers. Usually, imaging and histological modalities are commonly used in diagnosis, 

and preference is given to non-invasive methods rather than biopsies. Thus, profound insights into different 

biomarkers and OMIC technologies are helpful to improve diagnostic capabilities despite practical 

limitations. Advances in artificial intelligence, modifiable behavior-related changes, and pharmacological-

based therapies may provide better outcomes for patients. Future research should expand on the management 

of MASLD through precision medicine and on the creation of improved diagnostic modalities. 

Lesion detection and localization is an important activity in the staging phase of diagnosis and management 

of Prostate cancer (PCA) [19]. After a positive digital rectal examination or a raised prostate-specific antigen 

(PSA), precise identification of lesion locations for biopsy through multiparametric magnetic resonance 

imaging (mpMRI) is crucial when delivering active and targeted treatment against prostate cancer. Both 

mpMRI and US imaging are already used as part of prostate fusion biopsy (FBx), which assists in obtaining 
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accurate tissue samples. However, these techniques are still suboptimal due to the low resolution of both 

mpMRI and US, which can hamper cancer characterization and management. The prior research works have 

mainly concentrated on improving the visibility of the lesion on both the MPMRI and the US by using signs 

that are more reliable, such as shear wave electrography (SWE). AI has been shown to enhance using FBx 

and both mpMRI and US data, but due to lack of labeled lesions for mpMRI in enhancing the performance 

of advanced models. Self-supervised learning (SSL), which allows the training of AI systems with small 

amounts of annotated data with the help of vast unlabeled databases, has recently solved this problem. As 

mentioned in the work of [2], integrating mpMRI and US data into AI models can improve lesion 

identification and localization of PCa. The work shows that pretraining of joint embedding predictive 

architectures for mpMRI-SSL is promising and that false positive filtering techniques using actual and AI-

derived SWE increase the model specificity. The proposed model offered the best results to date for mpMRI-

based segmentation and revealed the potential for enhancing the detection of PCa lesions by 62.6%. 

CAD of medical images helps doctors identify regions of lesions for diagnosis and treatment purposes. 

Nevertheless, the problem of the target's irregular form and the sample size disparity between the target and 

the background make automated segmentation a rather tricky task. Most CNN-based and Transformer-based 

models have more layers or newly added complicated components for better segmentation results. However, 

these large models are often computationally infeasible in clinical practice since many clinical applications 

have restricted primary computing resources. In the research conducted in [20], the authors introduced a new 

UL-Net, a network based on Bio-Visual Interaction (BVI-Net) that should be fast, accurate and require few 

resources. The model incorporates two pathways: a Global Pathway, which replicates the dorsal stream for 

fast global feature processing, and a Local Pathway, which replicates the ventral for slow but detailed local 

feature processing. In addition, the skip connection is introduced, accompanied by the Graph Convolutional 

Network (GCN), which aims to combine multilevel features seamlessly. The authors tested it on ISIC, LiTS, 

and BraTS datasets. With a small number of parameters of 0.026 million, it showed superiority over the state-

of-the-art methods in medical image segmentation. The presented approach involving direct interfaces of 

biological vision mechanisms to artificial intelligence algorithms can provide novel guidelines for 

engineering bio-vision-driven deep learning models and contribute toward biomimetic computational vision 

research. 

Locating the lesions is the primary activity during the staging phase of managing PCa, diagnosing and treating 

the disease [21]. If the DRE is positive or prostate-specific antigen has increased, accurate dosing of lesion 

locations for biopsy is important using mpMRI. That is why mpMRI and ultrasound (US) imaging are already 

used to do this through a technique called mpMRI-targeted US-guided prostate fusion biopsy (FBx), but there 

are difficulties due to the low resolution of these methods. These may affect the likelihood rating of 

malignancy and, as a result, influence management decisions. The latest scholarly investigations seek to 

enhance accuracy in detecting lesions in mpMRI and US, employing more quantifiable formative features 

such as SWE. It has been demonstrated that the presented AI improves both the FBx value based on mpMRI 

as well as on US data is not labeled lesion data for mpMRI is still scarce for the improvement of state-of-the-

art models; the authors discuss how SSL can help mitigate this problem by using large unlabeled databases 

to train powerful feature extractors that can in turn help build case-specific AI models with a minimum 

amount of labeled data. The study shows the promise of joint embedding predictive architectures for mpMRI-

SSL pretraining. It presents a false-positive-filtering method using real and synthetic SWE data as 

supplementary material to increase the specificities of the mpMRI-based models. Their approach provides 

state-of-the-art results with an average precision of 0.626 for mpMRI-based segmentation, hence providing 

a promising improvement in lesion detection and localization for PC|A. CAD systems incorporating medical 

image processing with artificial intelligence AI have been designed to deal with issues like the elongated 

time required to diagnose a particular image and other variations that might be expected from one operator 

to the next. Skin cancer detection is one of the most explored use cases, and DNN-based systems for cancer 

diagnosis, including skin cancer detection, perform as well as human dermatologists. Nevertheless, their 

decision-making processes remain opaque, or 'black boxes,' and therefore, while DNNs find their place in 

clinical domains, they are not used in clinical practice [22]; in this regard, the Explainable AI or XAI 

techniques have been developed to provide ways through which the decision making by DNN can be 

explained. XAI has been previously used for skin lesion classification models but not for DNN models trained 

with additional feature injection. The work presents the theoretical background for explaining the 
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convolutional neural networks with feature injection used for diagnosing Melanoma. Three methods, 

including gradient-weighted class activation mapping and layer-wise relevance propagation, were used to 

create heatmaps and establish the image regions that affected predictions. In addition, the SHAPLEY additive 

explanations method was employed to evaluate the relative utilities of handcrafted features. The use of DNNs 

in clinical practice requires making them transparent and reliable instruments. 

As for the diagnosis of skin diseases, the classification of diseases is crucial for the treatment and further 

prognosis of a patient's condition. As outlined in [23], transfer learning models were developed to detect skin 

diseases from images using the "Skin Cancer: The MNIST HAM10000 dataset is made up of seven classes 

including ‘melanocytic nevi,' 'melanoma,' 'basal cell carcinoma' and 'vascular lesions.' The assessment also 

considered five transferred learning models and the accuracy and features extraction; these models included 

ResNet50, InceptionV3, VGG16, VGG19, and MobileNetV2. In these, ResNet50 yielded the highest 

accuracy of 99% and efficiency, making it most appropriate for diagnosis. These included MobileNetV2, 

with an accuracy of 97.5 %, which was deemed a suitable solution for low-resource environments. To 

overcome the lack of interpretability in deep learning models, another instance of an XAI tool, LIME, was 

used to explain how these models arrive at the diagnosis of diseases. These results reaffirm the utility of 

transfer learning in improving diagnostic precision, minimizing computational complexity, and 

demonstrating the possibility of developing automatic aids in dermatological diagnosis. 

As mentioned in [24], artificial intelligence (AI) is disrupting dermatology owing to marked improvements 

in the early identification of skin cancer and textural abnormalities, which was a serious drawback of clinical 

assessments based on the naked eye and histopathological analyses. This work systematically identified 95 

publications from databases that included Scopus, IEEE, and MDPI to assess AI's efficiency in the 

classification of skin cancer. The research disclosed that deep learning, image processing, and feature 

extraction could boost diagnostic precision, shorten testing time, and make it far more available in the 

underrepresented areas of the world. Though they effectively address existing business problems, such as 

customer segmentation, demand forecasting, and fraud detection, challenges, including data privacy or 

integration and the requirement for various, rich data, are important for future development. 

As detailed in the paper [25], the increasing prevalence of skin cancer has driven the development of machine-

learning methods to enhance diagnostic accuracy through skin lesion classification. This study introduced a 

multimodal Explainable Artificial Intelligence (XAI) system to align dermatologists' diagnostic perspectives. 

The XAI framework identifies thermoscopic features and facilitates evaluating interactions between 

clinicians and AI systems during melanoma diagnosis. A novel Convolutional Spiking Attention Module 

(CSAM) was proposed and incorporated within a Spiking Attention Block (SAB) to amplify critical features 

while minimizing noise. Pretrained models, such as InceptionResNetV2, DenseNet201, and Exception, 

integrated with SAB, demonstrated superior performance on the HAM10000 dataset and validated 

effectiveness using the ISIC-2019 dataset. This approach provided intrinsic attention to cancerous regions 

without relying on external explainers, highlighting the SAB module's impact on enhancing skin lesion 

classification. 

Table 1 presents a detailed synthesis of the literature review focusing on skin cancer detection using AI and 

other related fields; issues of concern include focus areas, research technique, findings, challenges and future 

direction. The reviewed body of work highlights that deep learning, transfer learning, and Explainable AI 

(XAI) aims at increasing accuracy, availability, and clinician trust in under resourced areas. Hurdles, 

including data variety, model validity, computational complexity and fairness issues, are identified as the 

main limitations. This is because the future trends highlighted across the studies include the availability of 

diverse datasets, lucid AI solutions for less endowment milieus, interdisciplinary cooperation, and policies 

that would guarantee efficient and moral AI applications. The table also justifies a clear roadmap for the 

future development of AI applications in dermatology. The existing problems are outlined in the table, along 

with the major focus on how technology can be used to overcome the issues shown in the table. 
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Table 1: Summary of Literature Review 

Study Focus Methods Used Key Findings Challenges/Limitations Future Directions 

[6] Explainable AI 

in Dermatology 

XAI methods like 

LIME, SHAPLEY, 

CAM 

Enhanced clinician 

trust and diagnosis 

transparency 

Opaque 'black box' models 

Integration of 

explainable AI 

tools into clinical 

workflows 

[7] Deep Learning 

in Skin Cancer 

CNNs, transfer learning, 

NIR spectroscopy 

High sensitivity 

and specificity in 

melanoma 

detection 

Limited external validity, 

small datasets 

Broader application 

across skin types, 

integration with 

other diagnostic 

modalities 

[8] Multimodal AI 

for Diagnostics 

InceptionResNetV2, 

DenseNet201, 

Convolutional Spiking 

Blocks 

Amplified critical 

features, improved 

skin lesion 

classification 

Dependence on pre-trained 

models 

Expanding 

multimodal AI 

applications and 

refining spiking 

attention blocks 

[9] Integration of 

AI and Histology 
MobileNet-V1, EVCM 

Sensitivity: 0.83, 

Specificity: 0.92 in 

BCC identification 

Requires trained personnel 

for clinical integration 

Use of AI to 

simplify training 

and enhance 

decision-making 

processes 

[10] Bio-Visual 

Interaction for 

CAD 

BVI-Net 

Accurate 

segmentation with 

low computational 

resources 

Limited generalizability 

Exploration of bio-

vision-driven deep 

learning for real-

world clinical 

application 

[11] AI in Skin 

Lesion 

Classification 

Transfer learning 

(ResNet50, 

MobileNetV2) 

High accuracy 

(99% with 

ResNet50, 97.5% 

with 

MobileNetV2) 

Complexity and 

computational needs 

Application in low-

resource 

environments with 

optimized 

computational 

frameworks 

[12] 

Socioeconomic 

Inequalities 

AI risk assessment 

models 

Enhanced early 

detection and risk 

stratification 

Risk of exacerbating existing 

health disparities 

Development of 

equitable AI tools 

that reduce biases 

in cancer risk 

assessment 

[13] Skin Lesion 

Segmentation 

UL-Net with BVI-Net 

architecture 

High segmentation 

accuracy using 

minimal 

computational 

resources 

Irregular shapes and size 

disparity between target and 

background 

Enhanced bio-

inspired AI designs 

for segmentation 

tasks 
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[14] Deep 

Learning for Skin 

Cancer Diagnosis 

A systematic review of 

DL algorithms 

High sensitivity 

and specificity for 

Melanoma and 

non-melanoma 

cancer 

Small study populations, 

lack of real-world trials 

Expanding trials to 

include diverse 

populations and 

real-world settings 

[15] AI in 

Microbiota 

Analysis 

Machine learning, NGS 

Improved cancer 

classification 

through microbiota 

analysis 

Limited integration with 

other -omics approaches 

Expanding 

microbiota-based 

diagnostics for 

personalized 

medicine 

[16] Non-invasive 

Imaging and AI 

Near-infrared 

spectroscopy 

Enhanced skin 

cancer diagnostics 

at molecular levels 

Lack of publicly available 

datasets for spectroscopy 

applications 

Increasing dataset 

availability and 

combining imaging 

with AI 

[17] Transfer 

Learning in 

Dermatology 

ResNet50, InceptionV3, 

VGG16, VGG19, 

MobileNetV2 

ResNet50 achieved 

the highest 

accuracy (99%), 

and MobileNetV2 

is ideal for low-

resource 

environments 

Lack of interpretability in 

deep learning 

Broadening the use 

of XAI tools to 

increase trust and 

transparency 

[18] Prostate 

Cancer Lesion 

Detection 

mp-MRI, ultrasound, 

self-supervised learning 

(SSL) 

Improved lesion 

identification and 

localization for 

prostate cancer 

Limited labeled datasets 

Increased use of 

SSL to leverage 

large unlabeled 

datasets 

[19] AI in Early 

Skin Cancer 

Detection 

Explainable AI (XAI), 

multimodal deep 

learning 

High diagnostic 

precision with 

clinician-aligned 

diagnostic tools 

Model integration into 

clinical workflows 

Development of 

clinician-friendly 

diagnostic systems 

[20] Global 

Application of AI 

in Dermatology 

Review of AI for skin 

cancer 

Improved 

diagnostic 

precision and 

accessibility in 

underserved 

regions 

Challenges in data privacy, 

diversity, and integration 

Creation of more 

equitable and 

secure AI 

applications 

[21] AI in Prostate 

Cancer 

Management 

mp-MRI, ultrasound, 

SSL-based predictive 

architectures 

Enhanced 

detection and 

localization of 

prostate cancer 

lesions 

False positives due to limited 

specificity 

Development of 

integrated SWE 

and mpMRI-based 

models 

[22] Use of AI in 

Imaging Systems 

Computer-aided 

diagnostics (CAD) 

AI-driven CAD 

systems improve 

lesion 

identification and 

diagnosis 

High computational 

demands and opaque 

decision-making 

Exploration of 

lightweight AI 

models and 

integration of XAI 

for transparency 
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[23] Integration of 

AI and Genetic 

Algorithms 

CNNs (MobileNet, 

Exception, Inception) 

optimized by PSO and 

BA 

Increased 

diagnostic speed 

and precision for 

melanoma and 

non-melanoma 

classification 

Dependence on large 

datasets for model accuracy 

Application of 

genetic 

optimization in 

resource-

constrained 

environments 

[24] 

Socioeconomic 

Gaps in Screening 

AI risk assessment tools 

Improved 

detection rates and 

risk stratification 

Risk of deepening health 

disparities 

Policy 

development to 

ensure equitable AI 

implementation 

[25] Emerging 

Techniques in 

MASLD Diagnosis 

AI, OMIC biomarkers 

Enhanced 

precision in 

MASLD diagnosis 

through non-

invasive imaging 

and AI-driven 

analysis 

Limited integration of AI 

with behavioral and 

pharmacological therapies 

Expansion of 

interdisciplinary 

methods for 

MASLD 

management 

In conclusion, due to new trends, we can conclude that the application of AI in skin cancer diagnosis has 

developed with purchased diagnostic capacities and effectiveness. The durability of using XAI in improving 

the clinical application of AI models is that dermatologists can explain and believe these models. However, 

issues still need to be dealt with to make such models clinically practical; these are Data privacy Model 

generalization and how to integrate the models into clinical workflows. Future work should concentrate on 

enhancing the methodologies of explain ability and providing proper, various datasets to increase the 

utilization of AI for populations. Further development of interdisciplinary cooperation and the creation of 

new synergy approaches are necessary for the consequent development of AI and XAI in dermatological 

practice. 

3. Discussion 

AI, particularly in dermatology, focusing on skin cancer, is a perfect example of the paradigm shift in health 

care. This section presents the data analysis in the literature review section concerning the various 

opportunities that remain to be exploited. 

3.1 Significant Achievements 

It has also been seen that with the help of AI technology like machine learning and deep learning, their 

diagnostic ability is as good as, or even better than, that of a dermatologist. Notable advancements include: 

● Improved Diagnostic Accuracy: Machines can accurately detect skin cancer, hence improving the 

chances of ruling out the disease at an early stage. For instance, Deep learning models such as Transfer 

learning models, including ResNet50, delivered an impressive accuracy of one hundred % for this study 

and can, therefore, be used in clinical practice [26]. 

● Accessibility and Equity: The advancement of the AI concept has extended diagnostic tools to regions 

deprived of such services. 

● Explain ability and Trust: This was made possible by advanced XAI techniques such as LIME and 

SHAPLEY, which have helped clients understand the decision-making processes [27]. 

3.2 Key Challenges 

Despite these advancements, several limitations persist: 

● Data Diversity and Bias: Although it is an improvement, most datasets are still relatively homogeneous 

regarding skin tones and geographic origin to impede generalization [28]. 

https://doi.org/10.54216/MOR.020103


 
Metaheuristic Optimization Review (MOR)                                    Vol. 02, No. 01, PP. 28-41, 2024 

38 
DOI: https://doi.org/10.54216/MOR.020103  
Received: April 25, 2024 Revised: July 24, 2024 Accepted: November, 14, 2024 

 

● Integration into Clinical Workflows: The fact is that some of the AI models are black box systems, and 

their complexity becomes the factor preventing their application in actual practice [29]. 

● Resource Limitations: The reception of the computational requests of the current models limits them 

from being implemented in environments that could be better-endowed [30]. 

3.3 Emerging Trends 

The Review identified several promising trends that are shaping the future of AI in dermatology: 

● Multimodal AI Approaches: The use of structural imaging, molecular, and clinical data is improving 

diagnostics and prognostics of diseases [31]. 

● Lightweight Neural Networks: These developments, such as BVI-Net and UL-Net, mean that AI tools 

can be practically viable in low-resource areas for they are accurate and computationally efficient [32]. 

● Self-Supervised Learning (SSL): SSL methodologies solve the problem of the absence of labeled data 

for large datasets and enable large-scale software testing [33]. 

3.4 Future Directions 

The full potential of AI in dermatology can only be realized through interdisciplinary collaboration and 

strategic advancements: 

● Data and Model Inclusivity: The necessity of forming a heterogeneous dataset and avalanche model is 

the key to reachable and fair solutions in healthcare. 

● Explainable AI: Clinicians' trust and ability to incorporate AI into the clinical environment require 

improving the interpretability of these models. 

● Global Accessibility: Resources should be allocated to promoting stronger, slimmer AI solutions to bring 

healthcare to hard-to-reach areas. 

● Interdisciplinary Research: It has been demonstrated how coupling artificial intelligence with related 

disciplines, such as genomics and bioinformatics, creates new possibilities for precision medicine and 

innovative diagnostics. 

AI is confirmed as a game-changer in Dermatology, with high accuracy, access and efficiency in skin cancer 

diagnosis. However, that is still far from becoming possible if one fails to discern the current problems and 

opportunities that must be addressed to achieve the full potential. Discipline-specific cooperation and 

appropriate and ethical approaches to implementation will make the foundation for future AI integration into 

healthcare facilities worldwide. 

4. Conclusion   

The application of artificial intelligence, particularly skin cancer in dermatology, is a big leap towards 

technological innovations in medicine. Deep and machine learning techniques of AI have shown incredible 

efficiency in detecting skin cancer with accuracy rates of, or even higher than, humans, including 

dermatologists. These technologies have been beneficial in offsetting problems such as inter-observer 

variability and a shortage of diagnostic equipment in areas where care delivery is scarce. From the use of 

artificial intelligence in diagnosis, there is improvement in the detection frequency, especially with skin 

malignant diseases; therefore, mortality rates are lower. 

Despite these accomplishments, several setbacks further hinder the realization of AI in dermatology. The 

issue of a limited representation of the necessary data, particularly skin images with low tones, is a 

disadvantage of training AI models. Furthermore, implementing some of the AI algorithms is challenging 

mainly because the algorithms are black boxes that encompass values that clinicians cannot understand, 

which enables them to trust the algorithm they are using. The requirements of computational resources and 

the dependence on large amounts of labeled data make AI implementation challenging in low-resource 

environments; therefore, new simple and interpretative AI models that would meet clinical demands should 

be developed. 
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Interdisciplinary collaboration and innovation would push future advances in AI for dermatology through 

these barriers. Fully representative datasets that show various skin tones and demographics are needed to 

develop fair AI tools. In addition, adopting methodologies like Explainable AI (XAI) will help enlighten 

clinicians and facilitate integration into medical practice. Lightweight neural networks and self-supervised 

learning (SSL) approaches would be most beneficial for their limitations in computation and the data 

available, such that AI-based diagnostics can be made available even in low-resource environments.  

Because of these changes, in the future, AI should not only be a diagnostic tool in dermatology; it should 

expand its role into treatment planning, personalized medicine, and continuous patient monitoring. 

Multimodal AI systems for clinical patient care, incorporating imaging, genomics, and clinical data, hold 

enormous potential. However, many major ethical and regulatory questions of data privacy, bias, and 

equitable implementation must be answered before such systems can be widely available. Through strategic 

advances and collaborative efforts, AI holds the potential promise of revolutionizing dermatology into a high 

quality and accessible healthcare solution for patients worldwide. 
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