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Abstract

In this paper, we explore the theoretical foundations of neutrosophics type-2 fuzzy sets by investigating its
algebraic properties, demonstrating how neutrosophics type-2 fuzzy sets can generalize and extend existing
operations in Type-1 and traditional Type-2 fuzzy sets. We also provide illustrative examples to clarify the
practical applications of these operations, showcasing the potential of neutrosophics type-2 fuzzy sets in areas
requiring sophisticated decision-making tools and uncertainty management.
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1 Introduction

Enormous progress has been made in solving fuzzy and uncertain issues since the advent of fuzzy set theory
see for example “#18 The neutrosophic set is one of the expansions of the conventional fuzzy sets that scholars
have developed throughout the years and in (1998), Smarandache ' defined the concept of a neutrosophic set
as a generalization of Atanassov’s intuitionistic fuzzy set. Also, he introduced neutrosophic logic, neutrosophic
set and its applications in 2!l In particular, Wang et al.' introduced the notion of a single valued neutrosophic
set.

Concurrently, type-2 fuzzy sets—first introduced by Zadeh (1975)'1% and subsequently defined by Mendel
(2001) ® expand the concept of the classical fuzzy set by permitting the membership functions to be fuzzy.
This expansion is especially helpful in situations when there is uncertainty stemming from both the data and
the imprecision in assigning membership ratings.

Neutronosophic type-2 fuzzy sets (NT2FS), which have garnered much in this paper, are created by com-
bining neutrosophic and type-2 fuzzy sets together. As a result of their increased capacity to capture impre-
cision and uncertainty, these sets are very helpful in domains like artificial intelligence, optimization, and
decision-making.

Building on the work of Smarandache and Mendel, this study examines some basic arithmetic operations
on neutrosophic type-2 fuzzy sets and investigates their applicability in several domains. Our goal in formaliz-
ing these procedures is to show how important they are for improving the precision and adaptability of models
that handle uncertainty in the actual world.

Moreover, in this paper, we introduce the concept of the neutrosophics type 2 fuzzy sets (NT2FS) are an
extension of traditional type 2 fuzzy sets that allow for modeling uncertainty in a more sophisticated way. And
introduce the notions of basic set operations and focus on the algebraic properties of these sets with several
illustrative examples.

The rest of the paper is organized as follows. The preliminary concepts of our study are presented in Sec-
tion2. In Section3, we propose the neutrosophics type-2 fuzzy set (NT2FS) and give examples, the geometrical
interpretation of neutrosophics type -2 fuzzy set, some set-theoretic operations of neutrosophics type -2 fuzzy
set including union, intersection, and complement are defined.
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2 Preliminaries

Consider a bounded lattice (L, <,17,07) and a universe X. Goguen © introduced L-fuzzy sets as objects A
characterized by some membership function 4 : X — L. His approach has generalized the crisp sets (in
which case L = {0, 1} and j14 is just the characteristic function defined as follows,

() = 1, ifzeA
XA =0, ifz¢ A

of the crisp subset A of X), Zadeh ' proposed the concept of the type-1 fuzzy set or fuzzy sets (here L =
[0,1]).,i.e. pa : X — [0, 1]. The following example, we use a fuzzy set to represent the concept 1 or so. We
can use different functions to model this concept. Following figure represents the concept 1 or so using three
different fuzzy set A, B and C.

We can represent the fuzzy set using tuple notation as,

A={{z,pa(z)) |z € X} ={(-2,0.3),(0,0.5),(1,1),(2,0.5),(3,0.2) ... }

In the same way we create the fuzzy set B and C'.

-

FM ,, |

'
Lh T

Figure 1: Fuzzy representation of concept 1 or so

The concept of a type-2 fuzzy set

The concept of type-2 fuzzy set was introduced by Zadeh it is an extension of the ordinary fuzzy set of type-1
fuzzy set type-1 fuzzy set 117 The overviews of type-2 fuzzy sets were given in Mendel ® Since ordinary
fuzzy sets and interval-valued fuzzy sets are special cases of type-2 fuzzy sets, Takac proposed that type-2
fuzzy sets are very practical in the circumstances where there are more uncertainties /2

Definition 2.1. 22 A type-2 fuzzy set A, denoted A, is a set membership function y 7 on universe X x [0, 1]
into [0, 1], i.e.

A= {((z,w),p 5 (z,u)) | Vz € X,Yu € J, C [0,1]} (1)
Where, 0 < g (z,u) <1 and J, = {(z,u) : w € [0,1], pz (z,u) > 0}.
Remark 2.2. A type-2 fuzzy set A, can also be expressed as
i- [ ] wiw|@w
zeX u€eJ,

| [ denotes union over all admissible « and u. For discrete universes of discourse | is replaced by .
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Example 2.3. Let X = {10, 16,22,28,34,40,46} the set of temperature. then, the concept of “ hot
temperature be represented by a type-2 fuzzy set A, the primary membership of the points of X is Jjp =
{0.00,0.20} = Jyg, J16 = {0.20,0.40,0.60} = Ju, Jo2 = {0.60,0.80,1.00} = Jag and J34 = {0.30,0.50,0.70, 1.00},
respectively. _

The discrete type-2 fuzzy set A is given by,

A= {((m,u),u;(m,u)) cxeX,ue J, C [0,1]}

Accordingly, discrete type-2 fuzzy set A can be represented as:

((10,u), pz (10,u)) ,u € Jig+
((16,u), 1z (16,u)) ,u € Jig+
B ((22,u) g (22, u)) ,U € Joo+
A= (28,u), 5 (28,u)) ,u € Jog+
%(34,u) Ny (34,u)) ,u € J3gt
(40,u), gz (40,w)) ,u € Jao+
((46,u) % (46,11,)) U € Jyug
((10,0.00), 1.00), ((10,0.20), 0.30) , ((16,0.20) , 0.60), (16, 0.40) , 1.00) ,
N ((16,0.60),0.70), ((22,0.60) ,0.40) , ((22,0.80) , 0.70) , ((22,1.00) , 1.00) ,
A=1{ ((28,0.60),0.40), ((28,0.80),0.70) , (28, 1.00) , 1.00) , (34, 0.30) , 0.20) ,
((34,0.50),0.60), ((34,0.7), 1. 00) ,((34,1.00),0.40) , ((40,0.20) , 0.30) ,
((40,0.40) , 1.00) , (40, 0.60) , 0.40) , ((46,0.00) , 1.00), (46, 0.20) , 0.60)

A type-2 fuzzy set for defining the concept of ahota temperature that we will denote by A, can be as depicted
below:

Figure 2: Representation of a type-2 fuzzy set for defining the concept of dhota temperature.

2.1 Neutrosophic fuzzy set

This section contains the basic definitions and properties of Neutrosophic fuzzy set and some related notions
that will be needed throughout this paper.

Definition 2.4. 7 Let X be a nonempty set. A neutrosophic set (NS, for short) A on X is an object of the form
A= {{z,pa(x),04(x),va(z)) | # € X} characterized by a membership function y14 : X —]~0,1%[and an
indeterminacy function 04 : X —]~0,1%[ and a non-membership function v4 : X —]~0, 17| which satisfy
the condition:

0 < pa(z) +oa(z) +va(x) <37, forany z € X.

Certainly, intuitionistic fuzzy sets are neutrosophic sets by setting o4 (x) =1 — pa(z) — va(z).
Next, we show the notion of single valued neutrosophic set as an instance of neutrosophic set which can
be used in real scientific and engineering applications.
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Example 2.5. Let us consider picture fuzzy sets A, B, C in X = {ay, ag, a3}, The full description of picture
fuzzy set A, i.e.

A ={(nalar),nalar),valar))/ar, (1, (az),nalaz),va(az))/az, (na(as),nalas), valas))/as}

For example,

A {(0.8,0.1,0) /a1, (0.4,0.2,0.3) /as, (0.5,0.3,0) /as}
B {(0.3,0.3,0.2) /a1, (0.7,0.1,0.1) /az, (0.4,0.3,0.2) /as}
C = {(0.3,0.4,0.1)/as,(0.6,0.2,0.1)/as, (0.4,0.3,0.1) /az}

Now, we consider the set D* defined by

D* = {x: (z1,29,23) : x € [0,1}3 and 0 <z + 2o+ 23 §3}

Iy
(0,0,1)} \ D’
N k
) |
| ™
|
I A
I g
I \.
|
s =
[ e (0,1,0)
4
‘,/ .
‘;'
» (1,0,0)

Consider the order relation <; on D*, defined by:

(1 <y1) A (23 > y3))
\Y
r<1ye s (r=91) A (23> y3))
\Y
((z1 = 1) A (23 = y3) A (T2 < 12))

Lemma 2.6. For each x,y € D*, we define:

Hlf(.l? y) _ min (I7y)a lfl‘ Sl yory Sl &€,
’ (e Ay1) 1= (z1 Ayr) — (w3 Vys), (3 Vys)), else
max(x7y), l'f$§1y0"y§1$,

sup(z, y) = ((x1 Vy1),0,(x3 Ays)), else.

Then, (D*,<1) is a complete lattice .

Using this lattice, we easily see that with every picture fuzzy set A = {(x, pa () ,na () ,va (z)) 1z € X}
corresponds an D*-fuzzy set, i.e., a mapping A : X — D*, z+— A(x) = (ua (z),n4 (z),va (x)). We de-
note the units of D* by 1p- = (1,0,0) and 0p- = (0,0, 1), respectively.

A single valued neutrosophic set

Definition 2.7. ¥ Let X be a nonempty set. A single valued neutrosophic set (SVNS, for short) A on X is an
object of the form A = {{(z, pa(z),04(x),va(x)) | z € X} characterized by a truth-membership function
s X — [0,1], an indeterminacy-membership function o4 : X — [0, 1] and a falsity-membership function
Vg X — [0, 1].

The class of single valued neutrosophic sets on X is denoted by SV N (X).
For any two SVNSs A and B on a set X, several operations are defined (see, e.g., 1>#). Here we will

present only those which are related to the present paper.
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(i) ACBifpa(z) < pp(x)and oy(x) < op(x) and va(z) > vp(x), forallz € X,
(i) A=Bifpa(z) = pup(z) and oa(z) = op(x) and va(z) = vg(x), forall z € X,
(i) AN B = {(z, pa(@) A s (), 04(2) A o), va(@) V vp(a)) | = € XY,

(v) AUB = {(z,pa(z) vV pp(x),0a(x) Vop(x),va(z) Nvp(x)) |z € X},
)

v) A={{z,1 —va(z),1 —0oa(x),1 —pa(x)) |z € X}.

2.2 Neutrosophics fuzzy t-norms and neutrosophics fuzzy t-conorms

Now we define neutrosophics fuzzy t-norms and neutrosophics fuzzy t-conorms and will give some classes of
conjuction operators and some classes of disjunction operators for neutrosophics fuzzy sets. Neutrosophics
fuzzy t-norms are direct extension of fuzzy t-norms and of intuitionistic fuzzy t-norms

Definition 2.8. A neutrosophics fuzzy t-norm is an (D*)2 — D* mapping T satisfying the following condi-
tions:

1. T (z,y) =T (y,x), Y,y € D* (Commutativity),
T(z,T(y,2)) =T (T (z,y), %), Vz,y, z € D* (Associativity),
T (z,y) <1 T (z,2),Vx,y,z € D*, y <1 z (Monotonicity) and
4. T (1p~,x) € I (z), Yz € D* (Boundary condition).

Definition 2.9. A neutrosophics fuzzy t-norm is an (D*)2 — D* mapping S satisfying the following condi-
tions:

1. S(z,y) =S (y,x), Yz, y € D* (Commutativity),

2. 8(x,S(y,2)) =5(S(x,y),2), Vx,y, z € D* (Associativity),
S(x,y) <1 S(x,z2),Ve,y,z € D*,y <1 z (Monotonicity) and
S (0p+,x) € I(x), Vo € D* (Boundary condition).

From now on, we denote z A y = min (z,y),  Vy = max (z,y) forall z,y € [0,1].
Now, we will give some examples about the neutrosophics fuzzy t-norms

Example 2.10. Some neutrosophics fuzzy t-norms, for all x,y € D*

' . S (m Ay, = (@ Ay) = (z3Vys), a3 Vys) ifz <,y
I Te(z,y) = inf{a,y} = { TNy otherwise
2. Tin(z,y) = (21 Ay1, 22 A Y2, 23 V Y3) = T Amin Y-

Example 2.11. Some neutrosophics fuzzy t-conorms, for all z,y € D*.

xlvy1707x3/\y3 if x <, Y
1. Ssup(xay) = sup {xay} = { ;Vy ) othe‘r|v;ilse

2. Smax(z,y) = (1 VY1, 82 AN y2, 23 AY3) = T Vinax V-

Definition 2.12. # A neutrosophics fuzzy t-norm T is called representable iff there exist two t-norms 1, to
and a t-conorm s3 on [0, 1] satisfying, for all x,y € D*,

T(x,y) = (t1(w1,y1), ta(w2,y2), 53(23,Y3))-

Definition 2.13. * A neutrosophics fuzzy t-norm S is called representable iff there exist two t-norms ¢1, ¢ and
a t-conorm s3 on [0, 1] satisfying, for all z,y € D*,

S(x,y) = (s3(@1,y1), t2(2,92), t1 (w3, y3))-
In this paper we consider that 7" and S'is representable.

DOI: https://doi.org/10.54216/1JNS.250314 148
Received: February 24, 2024 Revised: May 26, 2024 Accepted: September 27, 2024



International Journal of Neutrosophic Science (IJNS) Vol. 25, No. 03, PP. 144-154, 2025

3 Neutrosophics Type-2 Fuzzy Set

In this section, we introduce the concept of the neutrosophics type-2 fuzzy set,

Definition 3.1. An neutrosophics type-2 fuzzy set A note by NT2FS on X is defined as an object of the
following form:

A={((z,u),pz (x,u),n5 (@) ,v; (z,0) 2z € X,ueJ, C[0,1]} )

Where 1 7 (x,u) € [0,1] is called the degree of positive membership of (z,u) in X x J,, nz (z,u) € [0,1]
is called the degree of neutral membership of (z,u) in X x J, and v3 (z,u) € [0,1] is called the degree of
negative membership of (z,u) in X x J,, and where p 7,77 and v 7 satisfy the following condition:

pg(x,u) +ng(x,u) +vy(e,u) <1, forany (z,u) € X x J,

For a discrete universe of discourse, an NT2FS can be represented as:

A= / / (Mg(x,u)Wg(%u),yg(aj,u))|u |z, J,C0,1]
zeX wEJ,

In the continuous case, however, [ is substituted by >, resulting in the following representation for the
continuous universe:

A=Y ( > (pg(xu),mg (v,u), vy (z,u)) |u> |z, J,C[0,1]

reX u€Jy

Example 3.2. Let a NT2FS A represent the set young. The degree of positive membership function p 3 (, u)
of A is youth, the degree of neuter membership 77 (x,u) and The degree of negative membership function

vy (z,u) of A are the degree of youthness and the degree of adultness., respectively. Let X = {7,14,16}
be the set, and the primary membership of the points of X is J; = {0.8,0.9,1.0}, J14 = {0.6,0.7,0.8}, and
Jis = {0.4,0.5,0.6}, respectively. Then, the discrete NT2FS A is given by,

A= {((:c,u),ug(ﬂc,u),ng(w,u),Vg(x,u)) cxeX,ueJ, C [0,1]}

((7,U) yH A (77 u) s A (7a u) "V (7a u)),u €Jr= {087097 10}+
((14,u), pz (14,u) ,nz (14,u) , vz (14,u)),u € J; = {0.8,0.9,1.0}+
((16,u), gz (16,u),nz (16,u),v; (16,u)),u € J; = {0.8,0.9,1.0}+

B (7)), pz (T,uw),ng (T,u), vz (7,u),u € Jig = {0.6,0.7,0.8}+

A= ((14,u),pz(14,u),nz (14,u) vz (14,u)),u € J14 = {0.6,0.7,0.8}+
((16,u) , 7 (16,u) ,n7 (16,u) vz (16,u)),u € Ji4 = {0.6,0.7,0.8}+
((7,uw) 5 (T,u) 5 (T,u), vz (T,u),u € Jig = {0.4,0.5,0.6}+
((14,u), pz (14,u) ,nz (14,u) , vz (14,u)),u € Jig = {0.4,0.5,0.6}+
((16,u) ,pu 5 (16,u) ,nz (16,u) vz (16,u)),u € Jig = {0.4,0.5,0.6}
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((7,0.8) , 15 (7,0.8) , 15 (7,0.8) , v (7,0.8))+
((14,0.8), pu 7 (14,0.8) , 75 (14,0.8) , v 7 (14,0.8))+
((16,0.8), 115 (16,0.8) 777 (16,0.8) ,v/7 (16,0.8))+
((7,0.9) , 5 (7,0 9),15(7,0.9), v (7,0.9)+
((14,0.9), 15 (14,0.9) 77 (14,0.9) , v (14,0.9))+
((16,0.9), 115 (16,0.9) 77 (16,0.9) , v (16,0.9))+
((7,1.0),u (771 0),m5(7,1.0),v5 (7,1.0))+
((14,1.0), A(14 1.0), 75 (14, 1. 0) vz (14,1.0))+
((16,1.0), 15 (16,1.0) 777 (16,1.0) , v 7 (16,1.0))+
((7,0.6), 15 (7,0.6) , 75 (7,0.6) , v (7,0.6))+
((14,0.6), 115 (14,0.6) , 77 (14,0.6) , v (14,0.6))+
((16,0.6) , u 5 (16,0.6) , 75 (16,0.6) , v7 (16,0.6))+
- ((7,0.7), g(zo 7),n7(7,0.7),v5 (7,0 7))+
A=< ((14,0.7), 55 (14,0.7) ;07 (14,0.7) , v 7 (14,0.7))+
((16,0.7) , 415 (16,0.7) , 5(16,0.7),1/;(16,0.7))+
((7,0.8), 15 (7,0.8) , 75 (7,0.8) , v (7,0.8))+
((14,0.8), 7 (14,0.8) , 75 (14,0.8) , v (14,0.8))+
((16,0.8), 15 (16,0.8) ,7 7 (16,0.8) ,v5 (16,0.8))+
((7,0.4),;@(7,0 4), 15 (7,0.4) ,v; (7,0.4))+
((14,0.4), p 7 (14,0.4) ;75 (14,0.4) , v (14,0.4))+
((16,0.4), 5 (16,0.4) ;75 (16,0.4) , v (16,0.4))+
((7,0.5) 15 (7,0.5) 15 (7,0.5) , v (7,0.5))+
((14,0.5), 7 (14,0.5) , 75 (14,0.5), v (14,0.5))+
((16,0.5), 1 5 (16,0.5) ,77 (16,0.5) VA (16,0.5))+
((77 06) Mz (770 6) Xy (7 0. 6) Vi (770 6))"’
((14,0.6), 15 (14,0.6) , 5 (14,0.6) , v 7 (14,0.6))+
((16,0.6), 115 (16,0.6) , 75 (16,0.6) , v (16,0.6)))
((7,0.8),0.1,0.1,0.3) + ((14,0.8),0.2,0.00,0.5) + ((16,0.8) ,0.4,0.2,0.3)+
((7,0.9),0.4,0.1,0.2) + ((14,0.9) ,0.35,0.45,0.10) + ((16 0.9),0.28,0.10,0.4)+
((7,1.0),0.4,0.5,0.01) + ((14,1.0),0.14,0.27,0.30) -+ ((16 1.0),0.20,0.29,0.4)+
N ((7,0.6),0.2,0.4,0.3) + ((14,0.6) ,0.13,0.20,0.4) + ((16,0.6) , 0.36,0.18,0.40)+
A=< ((7,0.7),0.41,0.00,0.45) 4 ((14,0.7) ,0.37,0.12,0.48) + ((16 0.7),0.31,0.14,0.49)+
((7,0.8),0.28,0.10,0.34) + ((14,0.8),0.45,0.00,0.50) + ((16,0.8),0.27,0.4,0.29)+
((7,0.4),0.27,0.20,0.30) + ((14,0.4) ,0.21,0.50,0.24) + ((16,0.4) ,0.28, 0.40, 0.38)+
((7,0.5),0.20,0.41,0.32) + ((14,0.5) ,0.28,0.45,0.30) + ((16,0.5) ,0.27,0.47, 0.38)+
((7,0.6) ,0.24,0.47,0.34) + ((14,0.6) ,0.23,0.49,0.31) + ((16,0.6) , 0.24, 0.49, 0.30))

4 Operations on neutrosophics type-2 fuzzy set

In this section, we also present fundamental operations, such as union, intersection, and complement on the
proposed NT2FS, which are similar to several existing set-theoretic operations on fuzzy sets. Let’s consider
the two NT2FS, denoted below as A and B on X, in this context.

A= / (/ (Mg(x,u)»ng(x,u),ug(x,u))|u) |z, J, C[0,1]

rzeX UE Sy
And

EZ/ /(“ﬁ(x’”)’”ﬁ(x”)Wg(ﬂw))IV |, J, C[0,1]

zeX yeJ;

Then, the union of A and B is defined as:
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AUB= / / (h505 (@ w) 0z 5 (1, w) ,vi5 (@ w) [w | [z, J.UJ, C[0,1]

zeX \weJ,UuJ,

where:

)
&
E
RS
=
o]l
w
S
=

piog () =9 / 0
ueJ, ueJ,

By using the extension principle, we obtain,

pas @)= [ | [ (ustew nng @)

u€Jy VEJ;

Where S (u, v) is the t-conorm of « and v see definition above i.e.,

papew) = [ [ x@wnng @) | 18w
u€J, VEJ;
Similarly,
u€J, VGJ;:
And

vise) = [ | [ (awvge)

u€dz \velJ,

ﬂgug(%w):/ /(ng(x,u)/\ng(xw))) | S (u,v)

The intersection of of A and B is is defined as:

ﬁmé: / / (/igmé (55711/%77,%& ($7w)aygm§ (wi)) |w |.’E, JwUJ;C [0’1]

zeX wEJmUJ;

With,
pag @)= [ | [ (@) g ) | 17 o)
u€J, VEJ;
Mg (@ w) = / / (03 (@ 0) Ang (@) | | T (u,0)
u€Jz \velJ,
And

vinp@w = [ | [ txenvise) | 17w

u€J, VEJQ/C

Where T (u, v) is the t-norm of u and v.
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The complement of Ais A° defined as:

gc:/ /(Vg(x,u),n;(m,u),u;(m,u))|u |z, J, C][0,1]

zeX \u€cldy

In add~iti0n, there are some more operations on NT2FSs that are defined below.
AcCBiffpz(z,u) <pz(z,v), ng(ez,u) <ng(zr,v)and vz (z,u) > vz (z,v)forallz € X.
And

A= Blff,uA (v,u) = pg(x,v), ng(r,u) =nz(z,v)and vy (z,u) = vy (z,v) forallz € X.
We present the following example to illustrate the properties of NT2FS as mentioned below

Example 4.1. From the example let A and B be two NT2FSs representing the set young.
Let X = {7,14,16} be the set, and the primary membership of the points of X is J; = {0.8,0.9,1.0},
Jis = {0.6,0.7,0.8}, and J16 = {0.4,0.5, 0.6}, respectively. Then, the discrete NT2FS A is given by,

((7,0.8),0.1,0.1,0.3) + ((14,0.8) ,0.2,0.00,0.5) + ((16,0.8),0.4,0.2,0.3)+
((7.0.9).0.4,0.1,0.2) + ((14,0.9) . 0.35,0.45,0.10) + ((16,0.9) , 0.28, 0.10, 0.4)+
((7,1.0),0.4,0.5,0.01) + ((14,1.0) , 0.14,0.27,0.30) + ((16,1.0) , 0.20, 0.29, 0.4)+

N ((7,0.6),0.2,0.4,0.3) + ((14,0.6) ,0.13,0.20, 0.4) + ((16,0.6) ,0.36, 0.18, 0.40)+

A=1{ ((7,0.7),0.41,0.00,0.45) + ((14,0.7) ,0.37,0.12,0.48) + ((16,0.7) , 0.31,0.14, 0.49)+
((7.0.8),0.28,0.10,0.34) + (14, 0.8) , 0.45,0.00,0.50) + ((16,0.8) , 0.27, 0.4, 0.29)+
((7,0.4),0.27,0.20,0.30) + ((14,0.4) , 0.21,0.50,0.24) + ((16,0.4) , 0.28,0.40, 0.38)+
((7,0.5),0.20,0.41,0.32) + ((14,0.5) , 0.28,0.45,0.30) + ((16,0.5) , 0.27, 0.47, 0.38)+
((7,0.6),0.24,0.47,0.34) + ((14,0.6) , 0.23,0.49,0.31) + ((16, 0.6) , 0.24,0.49, 0.30))

And the discrete NT2FS B is given by,

((7,0.8),0.17,0.18,0.31) + ((14,0.8) , 0.21,0.00, 0.52) + ((16, 0.8) , 0.45,0.24, 0.33)+
((7,0.9),0.41,0.12,0.23) + ((14,0.9) ,0.37,0.48,0.19) + ((16,0.9) ,0.29,0.14, 0.42)+
((7,1.0),0.41,0.52,0.03) + ((14,1.0) ,0.15,0.28,0.34) + ((16, 1.0) , 0.27,0.28, 0.42)+
N ((7,0.6),0.24,0.41,0.35) + ((14,0.6) , 0.14,0.27,0.42) + ((16, 0.6) , 0.37,0.19, 0.47)+
B=1{ ((7,0.7),0.44,0.12,0.47) + ((14,0.7) , 0.38,0.18,0.49) + ((16,0.7) , 0.33,0.19, 0.50)+
((7,0.8),0.30,0.20,0.44) + ((14,0.8) ,0.27,0.30,0.35) + ((16, 0.8) , 0.27,0.41, 0.30)+
((7,0.4),0.26,0.19,0.27) + ((14,0.4) ,0.19,0.33,0.22) + ((16,0.4) , 0.26, 0.39, 0.38)+
((7,0.5),0.20,0.41,0.32) + ((14,0.5) ,0.21,0.42,0.30) + ((16,0.5) , 0.25, 0.45, 0.35)+
((7,0.6),0.21,0.44,0.33) + ((14,0.6) , 0.21,0.41,0.31) + ((16,0.6) , 0.22, 0.43, 0.29))

1. Then for x = 7, the union operation of Aand B is

(Ngué (7’w) Nios (7 ’LU) Vios (7 ’LU)) = (H; (77u) yNA (7vu)an (7,’LL))U(/L§ (770) y N5 (7,’[}) Vg (77’0))

So,
KiuB (7,w) = 12y (7,4) Vinax Ky (7,v)
Ure 5(7 ):77;(7 )vmaxn§ (7,v)
Vs (7,w) = vz (7T,u) Vimax V5 (7,0)
((7,0.8),0.1,0.1,0.3) Vinax ((7,0.8),0.17,0.18,0.31)
((7,0.9),0.4,0.1,0.2) Viax ((7,0.9),0.41,0.12,0.23)
((7,1.0),0.4,0.5,0.01) Viax ((7, 1 0),0.41,0.52,0.03)
o ((7,0.6),0.2,0.4,0.3) Viax ((7,0.6),0.24,0.41,0.35)
(AUB)z—7 =« ((7,0.7),0.41,0.00,0.45) Viax ((7,0.7),0.44,0.12,0.47)
((7,0.8), 0.287 0.10,0.34) Viax ((7,0.8),0.30,0.20,0.44)
((7,0.4),0.27,0.20,0.30) Vimax ((7,0.4),0.26,0.19,0.27)
((7,0.5),0.20,0.41,0.32) Vimax ((7,0.5),0.20,0.41, 0.32)
((7,0.6),0.24,0.47,0.34) vmax ((7,0.6),0.21,0.44, 0.33)
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((7,0.8),0.1,0.1,0.3) Vinax ((7,0.8),0.17,0.18,0.31) = ((7,0.8),0.17,0.10, 0.3)
((7,0.9),0.4,0.1,0.2) Vinax ((7,0.9),0.41,0.12,0.23) = ((7,0.9),0.41,0.1,0.2)
((7,1.0),0.4,0.5,0.01)) Vimax ((7,1.0),0.41,0.52,0.03) = ((7,1.0), 0.41,0.5,0.01)
o ((7,0.6),0.2,0.4,0.3) Viax ((7,0.6),0.24,0.41,0.35) = ((7,0.6) ,0.24,0.4,0.3)
(AUB),—7 = ¢ ((7,0.7),0.41,0.00, 0.45) Vinax ((7,0.7),0.44,0.12,0.47) = ((7,0.7) ,0.44, 0.00, 0.45)
((7,0.8),0.28,0.10, 0.34) Vinayx ((7,0.8),0.30,0.20,0.44) = ((7,0.8),0.28,0.10, 0.34)
((7,0.4),0.27,0.20, 0.30) vmax ((7,0.4),0.26,0.19,0.27) = ((7,0.4) ,0.27,0.19,0.27)
((7,0.5),0.20,0.41,0.32) Vpmayx ((7,0.5),0.20,0.41,0.32) = ((7,0.5),0.20,0.41, 0.32)
((7,0.6),0.24, 0.47, 0.34) Vinax ((7,0.6),0.21, 0.447 0.33) = ((7,0.6),0.24,0.44, 0.33)

In a similar way we find (A U B),—14 and (A U B),—1¢. Then, the union of A and B is defined as:

AUB :{ (AUB)a—7, (AU B) a1, (AU B) 416 }

2. Now, for z = 7, the intersection operation of Aand B is

(/L,ZQE (7’ ’LU) ' Nins (7’ ’LU) Vs (77 ’LU)) = (H,Z (77 u) yNA (7’ ’U,) VR (7’ u))m(ﬂé (77’0) y N5 (75 U) Vg (77U))

So,
/Lgﬂé (77 ’(U) = ,ug (77 U) Amin /J,E (7, 'U)
Ning (7,w) =0z (7,u) Amin 15 (7,v)
Ving (7’ w) =vz (7, u) Amin Vg 7, U)

(

(
((7,0.8),0.1,0.1,0.3) Amin ((7,0.8),0.17,0.18,0.31)
((7,0.9),0.4,0.1,0.2) Amin ((7,0.9),0.41,0.12,0.23)
((7,1.0),0.4,0.5,0.01) Amin ((7,1.0

o ((7,0.6),0.2,0.4,0.3) Amin ((7,0.6),0.24,0.41, 0.35)

(AN B),—7 =<{ ((7,0.7),0.41,0.00,0.45) Amin ((7,0.7),0.44,0.12, 0.47)
((7,0.8),0.28,0.10,0.34) Amin ((7,0.8),0.30,0.20, 0.44)
((7,0.4),0.27,0.20,0.30) Amin ((7,0.4),0.26,0.19,0.27)
((7,0.5),0.20,0.41,0.32) Amin ((7,0.5) )
((7,0.6),0.24,0.47,0.34) Amin ((7,0.6) )

7,0.5),0.20,0.41, 0.32
7,0.6),0.21,0.44,0.33

0.1,0.1,0.3) Amin ((7,0.
0.4,0.1,0.2) Amin ((7,0.
0.4,0.5,0.01)) Amin ((7,
7,0.6),0.2,0.4,0.3) Amin ((7,0.

((7,0.8), 7,
((7,0.9),
((7,1.0),
o ((7,0.6)
(ANB)y—7 = { ((7,0.7),0.41,0.00,0.45) Amin (
((7,0.8)
((7,0.4)
((7,0.5)
((7,0.6)

),0.17,0.18,0.31) =

8 ((7,0.8),0.1,0.10,0.31)
9),0.41,0.12,0.23) = ((7
1. (

7

8
9),0.4,0.1,0.23)
1.0),0.4,0.5,0.03)
6),0.2,0.4,0.35)
),0.41,0.00,0.47)
),0.28,0.10,0.44)
),0.26,0.19,0.30)
) )
)

)

7,0.8
7,0.9
7,1.0

0),0.41,0.52,0.03) = ((
6),0.24,0.41,0.35) = ((7,
),0.44,0.12,0.47) = (
),0.30,0.20,0.44) = (
),0.26,0.19,0.27) = (
),0.20,0.41,0.32) = (
) = ((7,

)
In a similar way we find (;1 N E)IZM and (A N B)r:16~ Then, the interaction of A and B is defined as:

)

0.
0.
7
0.

) )

(7,0.7 (7,0.7
7,0.8),0.28,0.10,0.34) Amin ((7,0.8 (7,0.8
7,0.4),0.27,0.20,0.30) Amin ((7,0.4 (7,0.4
7,0.5 ) Amin ((7,0.5 (7,0.5

(7,0.6 7,0.6

,0.20,0.41, 0.32 ,0.20,0.41,0.32

) )

7,0.6),0.24,0.47,0.34) A ),0.21,0.44,0.33 ),0.21,0.44,0.34

mln( ’

ANB= { (AN B)aer, (AN B)ye14, (AN B)peis }

3. Similar to the above in a direct way, we find Ac

5 Conclusions

Neutrosophics Type-2 Fuzzy Sets are a useful addition to conventional fuzzy systems as they offer a more
complex and nuanced way to manage uncertainty. In domains where a high tolerance for imprecision and in-
complete information is required, their capacity to encompass uncertainty at several levels provides researchers
and practitioners with a strong method for managing ambiguity. This presents a potential option for future
study and applications.
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